cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273231 Squares that remain squares if you decrease them by 4 times a repunit with the same number of digits.

This page as a plain text file.
%I A273231 #11 May 21 2016 22:43:09
%S A273231 4,97344,462400,473344,506944,846400,78854400,444622240000,
%T A273231 448417729600,454125036544,551027105344,824681934400,983984641600,
%U A273231 460651783840000,6703941381760000,444446222224000000,459134832243732544,462218702574222400,462583182938702400
%N A273231 Squares that remain squares if you decrease them by 4 times a repunit with the same number of digits.
%C A273231 Every term ends in 0 or 4.
%H A273231 Giovanni Resta, <a href="/A273231/b273231.txt">Table of n, a(n) for n = 1..10000</a>
%e A273231 4 - 4*1 = 0 = 0^2;
%e A273231 97344 - 4*11111 = 52900 = 230^2;
%e A273231 462400 - 4*111111 = 17956 = 134^2.
%p A273231 P:=proc(q,h) local n; for n from 1 to q do
%p A273231 if type(sqrt(n^2-h*(10^(ilog10(n^2)+1)-1)/9),integer) then print(n^2);
%p A273231 fi; od; end: P(10^9,4);
%t A273231 sol[k_] := Block[{x, e = IntegerLength@k, d = Divisors@ k}, Union[ #+k/# & /@ Select[ Take[d, Ceiling[ Length@d/2]], EvenQ[x = #+k/#] && IntegerLength[ x^2/4] == e &]]^2/4]; r[n_] := 4 (10^n-1)/9; Flatten[sol /@ r /@ Range[12]] (* _Giovanni Resta_, May 18 2016 *)
%Y A273231 Cf. A002275, A061844, A273299, A273230, A273232-A273234.
%K A273231 nonn,easy,base
%O A273231 1,1
%A A273231 _Paolo P. Lava_, May 18 2016
%E A273231 a(16)-a(19) from _Giovanni Resta_, May 18 2016