A273232 Squares that remain squares if you decrease them by 5 times a repunit with the same number of digits.
9, 64, 676, 6084, 56644, 556516, 605284, 669124, 702244, 743044, 784996, 835396, 8538084, 55562116, 60497284, 79673476, 6049417284, 7028810244, 96560590564, 555838838116, 567620600836, 575774404804, 604938617284, 612115334884, 619365852004, 643617898564, 817422124996
Offset: 1
Examples
9 - 5*1 = 4 = 2^2; 64 - 5*11 = 9 = 3^2; 676 - 5*111 = 121 = 11^2.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000
Programs
-
Maple
P:=proc(q,h) local n; for n from 1 to q do if type(sqrt(n^2-h*(10^(ilog10(n^2)+1)-1)/9),integer) then print(n^2); fi; od; end: P(10^9,5);
-
Mathematica
sol[k_] := Block[{x, e = IntegerLength@k, d = Divisors@ k}, Union[ #+k/# & /@ Select[ Take[d, Ceiling[ Length@d/2]], EvenQ[x = #+k/#] && IntegerLength[ x^2/4] == e &]]^2/4]; r[n_] := 5 (10^n-1)/9; Flatten[sol /@ r /@ Range[12]] (* Giovanni Resta, May 18 2016 *)
Comments