A273233 Squares that remain squares if you decrease them by 7 times a repunit with the same number of digits.
81, 841, 7921, 77841, 790321, 863041, 982081, 9991921, 79014321, 80299521, 94653441, 7901254321, 8635799041, 778133930161, 790123654321, 794396081521, 816057482881, 965485073281, 989863816561, 79012347654321, 86358529399041, 857789228465521, 7901234587654321, 8547733055510401
Offset: 1
Examples
81 - 7*11 = 4 = 2^2; 841 - 7*111 = 64 = 8^2; 7921 - 7*1111 = 144 = 12^2.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000
Programs
-
Maple
P:=proc(q,h) local n; for n from 1 to q do if type(sqrt(n^2-h*(10^(ilog10(n^2)+1)-1)/9),integer) then print(n^2); fi; od; end: P(10^9,7);
-
Mathematica
sol[k_] := Block[{x, e = IntegerLength@k, d = Divisors@ k}, Union[ #+k/# & /@ Select[ Take[d, Ceiling[ Length@d/2]], EvenQ[x = #+k/#] && IntegerLength[ x^2/4] == e &]]^2/4]; r[n_] := 7 (10^n-1)/9; Flatten[sol /@ r /@ Range[12]] (* Giovanni Resta, May 18 2016 *)
Comments