cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273238 Least number k such that k^3 is the sum of two nonzero squares in exactly n ways.

Original entry on oeis.org

2, 5, 25, 50, 125, 625, 1250, 65, 15625, 31250, 78125, 390625, 781250, 325, 9765625, 19531250, 48828125, 244140625, 488281250, 1625, 6103515625, 12207031250, 30517578125, 4225, 8450, 8125, 3814697265625, 7629394531250, 19073486328125, 95367431640625
Offset: 1

Views

Author

Altug Alkan, May 18 2016

Keywords

Examples

			a(1) = 2 because 2^3 = 2^2 + 2^2.
a(2) = 5 because 5^3 = 5^2 + 10^2 = 2^2 + 11^2.
a(3) = 25 because 25^3 = 35^2 + 120^2 = 44^2 + 117^2 = 75^2 + 100^2.
		

Crossrefs

Programs

  • Mathematica
    Function[t, FirstPosition[t, #] & /@ Range@ 8]@ Map[Length@ Select[ PowersRepresentations[#^3, 2, 2], ! MemberQ[#, 0] &] &, Range[2 10^3]] // Flatten (* Michael De Vlieger, May 18 2016 *)
    (* code for first 100 terms *) nR[n_] := (SquaresR[2, n] + Plus @@ Pick[{-4, 4}, IntegerQ /@ Sqrt[{n, n/2}]])/8; c[w_] := Floor[1/2 Times @@ (3 w + 1)]; q[1] = 2; q[n_] := Min[Reap[Do[ x = Times @@ (Take[{5, 13, 17, 29}, Length[e]]^e); If[c[e] == n && nR[x^3] == n, Sow[x]]; If[c[e] + 1 == n && nR[8 x^3] == n, Sow[2 x]], {e, Join[Transpose[{ Range@ 80}], Join @@ (IntegerPartitions[#, 4] & /@ Range[21]) ]}]][[2, 1]]]; Array[q, 100] (* Giovanni Resta, May 18 2016 *)
  • PARI
    A025426(n)=my(v=valuation(n, 2), f=factor(n>>v), t=1); for(i=1, #f[, 1], if(f[i, 1]%4==1, t*=f[i, 2]+1, if(f[i, 2]%2, return(0)))); if(t%2, t-(-1)^v, t)/2
    a(n)=my(k=1); while(A025426(k++^3)!=n, ); k
    first(n)=my(v=vector(n),t,k); while(1, t=A025426(k++^3); if(t>0 && t<=n && v[t]==0, v[t]=k; if(factorback(v), return(v)))) \\ Charles R Greathouse IV, May 18 2016

Extensions

a(10)-a(30) from Giovanni Resta, May 18 2016