This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A273240 #8 Sep 07 2018 20:31:14 %S A273240 2,4,2,0,9,5,8,9,8,5,8,2,5,9,8,8,4,1,7,7,5,7,2,3,0,3,0,1,5,3,5,4,4,7, %T A273240 2,2,3,1,8,9,1,6,3,3,6,8,8,1,7,0,1,3,4,2,6,1,3,2,7,2,2,1,8,0,1,7,0,8, %U A273240 1,6,2,0,1,5,7,7,1,3,3,3,1,4,9,1,0,4,3,4,8,9,9,2,9,8,1,0,2,9,7,5,9 %N A273240 Decimal expansion of Integral_{0..inf} x log(x)/(exp(x)-1) dx (negated). %H A273240 G. C. Greubel, <a href="/A273240/b273240.txt">Table of n, a(n) for n = 0..10000</a> %H A273240 Donal F. Connon, <a href="http://arxiv.org/abs/0710.4024">Some series and integrals involving the Riemann zeta function, binomial coefficients and the harmonic numbers. Volume II(b)</a>, arXiv:0710.4024 [math.HO] 2007. page 130. %F A273240 Equals (1/6)*(1-EulerGamma)*Pi^2+zeta'(2). %F A273240 Also equals (1/6)*Pi^2*(1+log(2*Pi)-12*log(G)), where G is the Glaisher-Kinkelin constant. %e A273240 -0.242095898582598841775723030153544722318916336881701342613272218... %t A273240 RealDigits[(1/6) Pi^2 (1 + Log[2Pi] - 12 Log[Glaisher]), 10, 101][[1]] %o A273240 (PARI) default(realprecision, 100); (1/6)*(1-Euler)*Pi^2 + zeta'(2) \\ _G. C. Greubel_, Sep 07 2018 %Y A273240 Cf. A001620, A073002, A074962. %K A273240 nonn,cons,easy %O A273240 0,1 %A A273240 _Jean-François Alcover_, May 18 2016