This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A273263 #30 Aug 31 2021 02:43:03 %S A273263 1,2,2,3,3,3,4,4,5,5,4,5,6,6,7,7,4,6,8,8,7,9,9,4,7,10,10,11,11,4,6,8, %T A273263 10,12,12,13,13,4,9,14,14,11,13,15,15,5,8,12,16,16,17,17,12,11,12,15, %U A273263 18,18,19,19,-3,4,10,15,20,20,13,17,21,21,4,13,22,22,23,23,-4,3,8,12,16,20,24,24,21,25,25 %N A273263 Irregular triangle read by rows: T(n,k) is the sum of the elements of the k-th column of the difference table of the divisors of n. %C A273263 If n is prime then row n is [n, n]. %C A273263 It appears that the last two terms of the n-th row are [n, n], n > 1. %C A273263 First differs from A274533 at a(38). %e A273263 Triangle begins: %e A273263 1; %e A273263 2, 2; %e A273263 3, 3; %e A273263 3, 4, 4; %e A273263 5, 5; %e A273263 4, 5, 6, 6; %e A273263 7, 7; %e A273263 4, 6, 8, 8; %e A273263 7, 9, 9; %e A273263 4, 7, 10, 10; %e A273263 11, 11; %e A273263 4, 6, 8, 10, 12, 12; %e A273263 13, 13; %e A273263 4, 9, 14, 14; %e A273263 11, 13, 15, 15; %e A273263 5, 8, 12, 16, 16; %e A273263 17, 17; %e A273263 12, 11, 12, 15, 18, 18; %e A273263 19, 19; %e A273263 -3, 4, 10, 15, 20, 20; %e A273263 13, 17, 21, 21; %e A273263 4, 13, 22, 22; %e A273263 23, 23; %e A273263 -4, 3, 8, 12, 16, 20, 24, 24; %e A273263 21, 25, 25; %e A273263 4, 15, 26, 26; %e A273263 ... %e A273263 For n = 18 the divisors of 18 are 1, 2, 3, 6, 9, 18, and the difference triangle of the divisors is %e A273263 1, 2, 3, 6, 9, 18; %e A273263 1, 1, 3, 3, 9; %e A273263 0, 2, 0, 6; %e A273263 2, -2, 6; %e A273263 -4, 8; %e A273263 12; %e A273263 The column sums give [12, 11, 12, 15, 18, 18] which is also the 18th row of the irregular triangle. %t A273263 Table[Total /@ Transpose@ Map[Function[w, PadRight[w, Length@ #]], NestWhileList[Differences, #, Length@ # > 1 &]] &@ Divisors@ n, {n, 25}] // Flatten (* _Michael De Vlieger_, Jun 26 2016 *) %o A273263 (PARI) row(n) = {my(d = divisors(n)); my(nd = #d); my(m = matrix(#d, #d)); for (j=1, nd, m[1,j] = d[j];); for (i=2, nd, for (j=1, nd - i +1, m[i,j] = m[i-1,j+1] - m[i-1,j];);); vector(nd, j, sum(i=1, nd, m[i, j]));} %o A273263 tabf(nn) = for (n=1, nn, print(row(n));); %o A273263 lista(nn) = for (n=1, nn, v = row(n); for (j=1, #v, print1(v[j], ", "));); \\ _Michel Marcus_, Jun 25 2016 %Y A273263 Row lengths give A000005. Right border gives A000027. Column 1 is A161857. Row sums give A273103. %Y A273263 Cf. A187202, A273102, A273135, A272210, A273136, A273261, A273262, A274533. %K A273263 sign,tabf %O A273263 1,2 %A A273263 _Omar E. Pol_, May 22 2016