A273265 Numbers k such that (16*10^k + 161)/3 is prime.
0, 1, 2, 3, 6, 7, 8, 10, 16, 17, 35, 53, 121, 155, 178, 487, 880, 1153, 2136, 2790, 2803, 5775, 5845, 5971, 7131, 13213, 13813, 17153, 31461, 38735, 93577, 188457
Offset: 1
Examples
3 is in this sequence because (16*10^3 + 161)/3 = 5387 is prime. Initial terms and associated primes: a(1) = 0, 59; a(2) = 1, 107; a(3) = 2, 587; a(4) = 3, 5387; a(5) = 6, 5333387, etc.
Links
- Makoto Kamada, Factorization of near-repdigit-related numbers.
- Makoto Kamada, Search for 53w87.
Programs
-
Mathematica
Select[Range[0, 100000], PrimeQ[(16*10^# + 161)/3] &]
-
PARI
is(n)=ispseudoprime((16*10^n + 161)/3) \\ Charles R Greathouse IV, Jun 13 2017
Extensions
a(32) from Robert Price, Feb 27 2019
Comments