cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273278 Number of ordered ways to write n as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that x^2*y^2 + 3*y^2*z^2 + 2*z^2*w^2 is a square.

Original entry on oeis.org

1, 4, 4, 2, 4, 8, 4, 1, 4, 8, 8, 4, 2, 9, 6, 3, 4, 12, 9, 6, 8, 8, 5, 2, 4, 14, 15, 6, 1, 14, 9, 2, 4, 9, 12, 8, 8, 9, 11, 1, 8, 18, 7, 4, 4, 17, 8, 3, 2, 12, 18, 9, 9, 17, 15, 4, 6, 8, 8, 10, 3, 15, 13, 5, 4, 22, 15, 6, 12, 15, 13
Offset: 0

Views

Author

Zhi-Wei Sun, May 18 2016

Keywords

Comments

Conjecture: a(n) > 0 for all n = 0,1,2,..., and a(n) = 1 only for n = 0, 4^k*m (k = 0,1,2,... and m = 7, 39, 87, 183, 231, 807, 879, 959, 1479, 2391, 2519, 2759, 4359, 10887).
See part (ii) of the conjecture in A269400 for similar conjectures.
For more conjectural refinements of Lagrange's four-square theorem, one may consult arXiv:1604.06723.

Examples

			a(7) = 1 since 7 = 2^2 + 1^2 + 1^2 + 1^2 with 2^2*1^2 + 3*1^2*1^2 + 2*1^2*1^2 = 3^2.
a(39) = 1 since 39 = 2^2 + 1^2 + 5^2 + 3^2 with 2^2*1^2 + 3*1^2*5^2 + 2*5^2*3^2 = 23^2.
a(87) = 1 since 87 = 2^2 + 1^2 + 1^2 + 9^2 with 2^2*1^2 + 3*1^2*1^2 + 2*1^2*9^2 = 13^2.
a(183) = 1 since 183 = 10^2 + 7^2 + 5^2 + 3^2 with 10^2*7^2 + 3*7^2*5^2 + 2*5^2*3^2 = 95^2.
a(231) = 1 since 231 = 10^2 + 1^2 + 9^2 + 7^2 with 10^2*1^2 + 3*1^2*9^2 + 2*9^2*7^2 = 91^2.
a(807) = 1 since 807 = 10^2 + 23^2 + 3^2 + 13^2 with 10^2*23^2 + 3*23^2*3^2 + 2*3^2*13^2 = 265^2.
a(879) = 1 since 879 = 14^2 + 11^2 + 21^2 + 11^2 with 14^2*11^2 + 3*11^2*21^2 + 2*21^2*11^2 = 539^2.
a(959) = 1 since 959 = 10^2 + 15^2 + 25^2 + 3^2 with 10^2*15^2 + 3*15^2*25^2 + 2*25^2*3^2 = 675^2.
a(1479) = 1 since 1479 = 34^2 + 11^2 + 11^2 + 9^2 with 34^2*11^2 + 3*11^2*11^2 + 2*11^2*9^2 = 451^2.
a(2391) = 1 since 2391 = 34^2 + 11^2 + 5^2 + 33^2 with 34^2*11^2 + 3*11^2*5^2 + 2*5^2*33^2 = 451^2.
a(2519) = 1 since 2519 = 42^2 + 1^2 + 27^2 + 5^2 with 42^2*1^2 + 3*1^2*27^2 + 2*27^2*5^2 = 201^2.
a(2759) = 1 since 2759 = 26^2 + 21^2 + 11^2 + 39^2 with 26^2*21^2 + 3*21^2*11^2 + 2*11^2*39^2 = 909^2.
a(4359) = 1 since 4359 = 46^2 + 19^2 + 19^2 + 39^2 with 46^2*19^2 + 3*19^2*19^2 + 2*19^2*39^2 = 1501^2.
a(10887) = 1 since 10887 = 31^2 + 85^2 + 51^2 + 10^2 with 31^2*85^2 + 3*85^2*51^2 + 2*51^2*10^2 = 7990^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
    Do[r=0;Do[If[SQ[n-x^2-y^2-z^2]&&SQ[x^2*y^2+3*y^2*z^2+2z^2*(n-x^2-y^2-z^2)],r=r+1],{x,0,Sqrt[n]},{y,0,Sqrt[n-x^2]},{z,0,Sqrt[n-x^2-y^2]}];Print[n," ",r];Continue,{n,0,70}]