A273278 Number of ordered ways to write n as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that x^2*y^2 + 3*y^2*z^2 + 2*z^2*w^2 is a square.
1, 4, 4, 2, 4, 8, 4, 1, 4, 8, 8, 4, 2, 9, 6, 3, 4, 12, 9, 6, 8, 8, 5, 2, 4, 14, 15, 6, 1, 14, 9, 2, 4, 9, 12, 8, 8, 9, 11, 1, 8, 18, 7, 4, 4, 17, 8, 3, 2, 12, 18, 9, 9, 17, 15, 4, 6, 8, 8, 10, 3, 15, 13, 5, 4, 22, 15, 6, 12, 15, 13
Offset: 0
Keywords
Examples
a(7) = 1 since 7 = 2^2 + 1^2 + 1^2 + 1^2 with 2^2*1^2 + 3*1^2*1^2 + 2*1^2*1^2 = 3^2. a(39) = 1 since 39 = 2^2 + 1^2 + 5^2 + 3^2 with 2^2*1^2 + 3*1^2*5^2 + 2*5^2*3^2 = 23^2. a(87) = 1 since 87 = 2^2 + 1^2 + 1^2 + 9^2 with 2^2*1^2 + 3*1^2*1^2 + 2*1^2*9^2 = 13^2. a(183) = 1 since 183 = 10^2 + 7^2 + 5^2 + 3^2 with 10^2*7^2 + 3*7^2*5^2 + 2*5^2*3^2 = 95^2. a(231) = 1 since 231 = 10^2 + 1^2 + 9^2 + 7^2 with 10^2*1^2 + 3*1^2*9^2 + 2*9^2*7^2 = 91^2. a(807) = 1 since 807 = 10^2 + 23^2 + 3^2 + 13^2 with 10^2*23^2 + 3*23^2*3^2 + 2*3^2*13^2 = 265^2. a(879) = 1 since 879 = 14^2 + 11^2 + 21^2 + 11^2 with 14^2*11^2 + 3*11^2*21^2 + 2*21^2*11^2 = 539^2. a(959) = 1 since 959 = 10^2 + 15^2 + 25^2 + 3^2 with 10^2*15^2 + 3*15^2*25^2 + 2*25^2*3^2 = 675^2. a(1479) = 1 since 1479 = 34^2 + 11^2 + 11^2 + 9^2 with 34^2*11^2 + 3*11^2*11^2 + 2*11^2*9^2 = 451^2. a(2391) = 1 since 2391 = 34^2 + 11^2 + 5^2 + 33^2 with 34^2*11^2 + 3*11^2*5^2 + 2*5^2*33^2 = 451^2. a(2519) = 1 since 2519 = 42^2 + 1^2 + 27^2 + 5^2 with 42^2*1^2 + 3*1^2*27^2 + 2*27^2*5^2 = 201^2. a(2759) = 1 since 2759 = 26^2 + 21^2 + 11^2 + 39^2 with 26^2*21^2 + 3*21^2*11^2 + 2*11^2*39^2 = 909^2. a(4359) = 1 since 4359 = 46^2 + 19^2 + 19^2 + 39^2 with 46^2*19^2 + 3*19^2*19^2 + 2*19^2*39^2 = 1501^2. a(10887) = 1 since 10887 = 31^2 + 85^2 + 51^2 + 10^2 with 31^2*85^2 + 3*85^2*51^2 + 2*51^2*10^2 = 7990^2.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
- Zhi-Wei Sun, Refining Lagrange's four-square theorem, arXiv:1604.06723 [math.GM], 2016.
Crossrefs
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]] Do[r=0;Do[If[SQ[n-x^2-y^2-z^2]&&SQ[x^2*y^2+3*y^2*z^2+2z^2*(n-x^2-y^2-z^2)],r=r+1],{x,0,Sqrt[n]},{y,0,Sqrt[n-x^2]},{z,0,Sqrt[n-x^2-y^2]}];Print[n," ",r];Continue,{n,0,70}]
Comments