cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273279 Least perfect power that is the sum of two nonzero squares in exactly n ways.

Original entry on oeis.org

8, 125, 3125, 4225, 1953125, 48828125, 105625, 274625, 762939453125, 2640625, 476837158203125, 17850625, 1221025, 34328125, 186264514923095703125, 1650390625, 446265625, 1160290625, 41259765625, 4291015625, 45474735088646411895751953125, 30525625
Offset: 1

Views

Author

Altug Alkan, May 19 2016

Keywords

Comments

Least m^k that is the sum of two nonzero squares in exactly n ways where m > 0 and k >= 2.
Terms of this sequence are 2^3, 5^3, 5^5, 65^2, 5^10, 5^11, 325^2, 65^3, ...
Prime powers that are listed in this sequence are 2^3, 5^3, 5^5, 5^10, 5^11, ...

Examples

			8 is a term because 8 = 2^3 = 2^2 + 2^2.
125 is a term because 125 = 5^3 = 2^2 + 11^2 = 5^2 + 10^2.
3125 is a term because 3125 = 5^5 = 10^2 + 55^2 = 25^2 + 50^2 = 38^2 + 41^2.
		

Crossrefs

Programs

  • Mathematica
    p = Select[Prime@ Range@ 90, Mod[#, 4] == 1 &]; f[w_] := Times @@ (Take[p, Length@w]^Reverse[w]); c[w_] := Floor[(1/2) Times @@ (w+1)];r[w_] := Block[{v, k = If[Length@w == 1, 1,2]}, While[(v = cn[k w]) < trg, k++]; If[v == trg, b = Min[b, f[k*w]]]; If[cn[w] < trg, r[Append[w, 1]]; v=w; v[[-1]]++; r[v]]]; a[1]=8; a[n_] := (b=Infinity; trg = n; r[{2}]; r[{1, 1}]; b); Array[a, 50] (* Giovanni Resta, May 19 2016 *)

Extensions

a(9)-a(22) from Giovanni Resta, May 19 2016