A273303 First differences of number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 633", based on the 5-celled von Neumann neighborhood.
3, 17, 8, 43, 16, 68, 4, 109, 0, 127, 24, 160, -8, 212, -48, 272, -40, 348, 32, 224, -40, 364, -100, 417, -56, 464, -96, 492, -200, 596, -240, 708, -256, 920, -272, 760, -248, 752, -328, 880, -256, 868, -352, 1040, -448, 1012, -632, 1512, -560, 1220, -640
Offset: 0
References
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
Links
- Robert Price, Table of n, a(n) for n = 0..127
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- S. Wolfram, A New Kind of Science
- Index entries for sequences related to cellular automata
- Index to 2D 5-Neighbor Cellular Automata
- Index to Elementary Cellular Automata
Crossrefs
Cf. A273299.
Programs
-
Mathematica
CAStep[rule_,a_]:=Map[rule[[10-#]]&,ListConvolve[{{0,2,0},{2,1,2},{0,2,0}},a,2],{2}]; code=633; stages=128; rule=IntegerDigits[code,2,10]; g=2*stages+1; (* Maximum size of grid *) a=PadLeft[{{1}},{g,g},0,Floor[{g,g}/2]]; (* Initial ON cell on grid *) ca=a; ca=Table[ca=CAStep[rule,ca],{n,1,stages+1}]; PrependTo[ca,a]; (* Trim full grid to reflect growth by one cell at each stage *) k=(Length[ca[[1]]]+1)/2; ca=Table[Table[Part[ca[[n]][[j]],Range[k+1-n,k-1+n]],{j,k+1-n,k-1+n}],{n,1,k}]; on=Map[Function[Apply[Plus,Flatten[#1]]],ca] (* Count ON cells at each stage *) Table[on[[i+1]]-on[[i]],{i,1,Length[on]-1}] (* Difference at each stage *)
Comments