This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A273317 #21 May 20 2016 13:54:24 %S A273317 2,3,6,4,12,7,42,5,20,13,156,8,56,43,1806,6,30,21,420,14,182,157, %T A273317 24492,9,72,57,3192,44,1892,1807,3263442,7,42,31,930,22,462,421, %U A273317 176820,15,210,183,33306,158,24806,24493,599882556,10,90,73,5256,58,3306,3193,10192056 %N A273317 Irregular table read by rows: T(0,0) = 2 and T(n,2k) = T(n-1,k)+1, T(n,2k+1) = T(n-1,k)*(T(n-1,k)+1) for 0 <= k < 2^(n-1). %C A273317 The first entry in row n is n+2. %C A273317 The second entry in row n (n>0) is the A002378(n+2). %C A273317 No number appears twice in the same row, so row n has 2^n distinct terms. %C A273317 Row n and row n+1 have no elements in common. %C A273317 There are infinitely many mutually disjoint rows; this fact can be used to show that the harmonic series diverges since the sum of reciprocals of entries in every row equals 1/2. This also allows a proof that every positive rational number is the sum of a finite number of distinct Egyptian fractions. %C A273317 Let S(0) = {2} and for n>=1 define S(n) = {a | a = c+1 or a = c*(c+1) for some c in S(n-1)}; then row n contains the elements of S(n). %H A273317 Steven J. Kifowit, <a href="http://stevekifowit.com/pubs/harm2.pdf">More Proofs of Divergence of the Harmonic Series</a>. %H A273317 J. C. Owings, Jr., <a href="http://www.jstor.org/stable/2315211">Another Proof of the Egyptian Fraction Theorem</a>, Amer. Math. Monthly, 75(7) (1968), 777-778. %F A273317 T(0,0) = 2, and T(n,2k) = T(n-1,k)+1, T(n,2k+1) = T(n-1,k)*(T(n-1,k)+1) for 0 <= k < 2^(n-1). %F A273317 Sum_{a in row(n)} 1/a = 1/2 for all n. %e A273317 The table begins: %e A273317 2, %e A273317 3, 6, %e A273317 4, 12, 7, 42, %e A273317 5, 20, 13, 156, 8, 56, 43, 1806, %e A273317 6, 30, 21, 420, 14, 182, 157, 24492, 9, 72, 57, 3192, 44, 1892, 1807, 3263442, %p A273317 A273317 := proc(n,j) %p A273317 if n = 0 then %p A273317 2 ; %p A273317 elif type(j,'even') then %p A273317 1+procname(n-1,j/2) ; %p A273317 else %p A273317 procname(n-1,floor(j/2)) ; %p A273317 %*(%+1) ; %p A273317 end if; %p A273317 end proc: # _R. J. Mathar_, May 20 2016 %o A273317 (Sage) %o A273317 def T(n,j): %o A273317 if n==0: %o A273317 return 2 %o A273317 if j%2==0: %o A273317 return T(n-1,floor(j/2))+1 %o A273317 else: %o A273317 t=T(n-1,floor(j/2)) %o A273317 return t*(t+1) %o A273317 S=[[T(n,k) for k in [0..2^n-1]] for n in [0..10]] %o A273317 [x for sublist in S for x in sublist] %Y A273317 Cf. A002378, A002061. %K A273317 nonn,tabf %O A273317 0,1 %A A273317 _Tom Edgar_, May 19 2016