A273318 Numbers n such that n+k-1 is the sum of two nonzero squares in exactly k ways for all k = 1, 2, 3.
58472, 79208, 104616, 150048, 160848, 205648, 224648, 234448, 252808, 259648, 259920, 294048, 297448, 387648, 421648, 433448, 462976, 488448, 506248, 563048, 621448, 683648, 770976, 790848, 799648, 837448, 1008648, 1040848, 1084904, 1186632, 1195648, 1205648, 1212064
Offset: 1
Keywords
Examples
58472 is a term because; 58472 = 86^2 + 226^2. 58473 = 48^2 + 237^2 = 147^2 + 192^2. 58474 = 57^2 + 235^2 = 125^2 + 207^2 = 143^2 + 195^2.
Links
- Robert Israel, Table of n, a(n) for n = 1..1095
Programs
-
Maple
N:= 10^6: # get all terms <= N-2 R:= Vector(N): for x from 1 to floor(sqrt(N)) do for y from 1 to min(x,floor(sqrt(N-x^2))) do R[x^2+y^2]:= R[x^2+y^2]+1 od od: count:= 0: for n from 1 to N-2 do if [R[n],R[n+1],R[n+2]] = [1,2,3] then count:= count+1; A[count]:= n; fi od: seq(A[i],i=1..count); # Robert Israel, May 19 2016
-
PARI
is(n,k) = {nb = 0; lim = sqrtint(n); for (x=1, lim, if ((n-x^2 >= x^2) && issquare(n-x^2), nb++); ); nb == k; } isok(n) = is(n,1) && is(n+1,2) && is(n+2,3);
Comments