cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273321 Wiener index of graph of b.c.c. unit cells in a line = Sum of distances in a b.c.c. row graph.

Original entry on oeis.org

64, 206, 488, 960, 1672, 2674, 4016, 5748, 7920, 10582, 13784, 17576, 22008, 27130, 32992, 39644, 47136, 55518, 64840, 75152, 86504, 98946, 112528, 127300, 143312, 160614, 179256, 199288, 220760, 243722, 268224, 294316, 322048, 351470, 382632, 415584, 450376, 487058, 525680, 566292
Offset: 1

Views

Author

Benedek Nagy, May 20 2016

Keywords

Programs

  • Mathematica
    Table[(25/3) n^3 + 20 n^2 + (71/3) n + 12, {n, 40}] (* or *)
    Rest@ CoefficientList[Series[2 x (32 - 25 x + 24 x^2 - 6 x^3)/(1 - x)^4, {x, 0, 40}], x] (* Michael De Vlieger, May 20 2016 *)
  • PARI
    Vec(2*x*(32-25*x+24*x^2-6*x^3)/(1-x)^4 + O(x^50)) \\ Colin Barker, May 20 2016

Formula

a(n) = (25/3)*n^3 + 20*n^2 + (71/3)*n + 12.
From Colin Barker, May 20 2016: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4.
O.g.f.: 2*x*(32 - 25*x + 24*x^2 - 6*x^3) / (1 - x)^4. (End)
E.g.f.: (12 + 52*x + 45*x^2 + (25/3)*x^3)*exp(x) - 12. - Benedict W. J. Irwin, May 27 2016