cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273348 The sum of the semiperimeters of the bargraphs of area n (n>=1).

Original entry on oeis.org

2, 6, 16, 39, 92, 211, 476, 1059, 2332, 5091, 11036, 23779, 50972, 108771, 231196, 489699, 1034012, 2177251, 4572956, 9582819, 20039452, 41826531, 87148316, 181287139, 376555292, 781072611, 1618069276, 3347986659, 6919669532, 14286731491, 29468247836, 60726065379, 125031270172, 257220819171, 528758195996
Offset: 1

Views

Author

Emeric Deutsch, Jun 03 2016

Keywords

Examples

			a(4) = 39 because the 8 bargraphs of area 4 correspond to the compositions [2,2],[4],[3,1],[1,3],[2,1,1],[1,2,1],[1,1,2],[1,1,1,1] and the sum of their semiperimeters is 4 + 7*5 = 39.
		

Crossrefs

Programs

  • Maple
    a := proc(n) (5/12)*n*2^n+(29/36)*2^n-(1/18)*(-1)^n-1/2 end proc:
    seq(a(n), n = 1 .. 35);
  • Mathematica
    LinearRecurrence[{4, -3, -4, 4}, {2, 6, 16, 39}, 35] (* Jean-François Alcover, Nov 27 2017 *)
  • PARI
    first(n) = Vec(x*(2-2*x-2*x^2+x^3)/((1-x^2)*(1-2*x)^2) + O(x^(n+1))) \\ Iain Fox, Nov 27 2017

Formula

G.f.: g = t(2-2t-2t^2+t^3)/((1-t^2)(1-2t)^2).
a(n) = (15*n2^n+29*2^n-2(-1)^n-18)/36.
a(n) = Sum_{k>=2} k * A273346(k,n).