This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A273353 #20 Jun 07 2019 03:03:16 %S A273353 1,2,2,3,4,4,4,6,6,6,8,8,9,10,12,12,12,12,12,12,16,16,18,20,20,24,24, %T A273353 24,24,24,24,24,24,24,30,32,32,36,36,40,40,48,48,48,48,48,48,48,48,60, %U A273353 64,64,72,72,72,80,80,84,90,96,96,96,96,96,96,96,96,96,100,108,120,120,120,128,128,144,144,144,144,144,160 %N A273353 Number of divisors of A067128(n). %C A273353 Is a(n + 1) / a(n) ~ 1 for large n? %C A273353 Every term in this sequence also appears in A002183, where every element of this sequence occurs exactly once. %C A273353 In A067128 it is asked if A034287 = A067128. If that is the case then this sequence is also the number of divisors of A034287. %H A273353 Amiram Eldar, <a href="/A273353/b273353.txt">Table of n, a(n) for n = 1..10000</a> %F A273353 a(n) = A000005(A067128(n)). %t A273353 s = {}; dmax = 0; Do[d = DivisorSigma[0, n]; If[d >= dmax, AppendTo[s, d]; dmax = d], {n, 1, 10^6}]; s (* _Amiram Eldar_, Jun 07 2019 *) %o A273353 (PARI) is_a067128(n) = my(nd=numdiv(n)); for(k=1, n-1, if(numdiv(k) > nd, return(0))); return(1) %o A273353 for(n=1, 50000, if(is_a067128(n), print1(numdiv(n), ", "))) \\ _Felix Fröhlich_, May 24 2016 %Y A273353 Cf. A000005, A002182, A002183, A034287, A067128. %K A273353 nonn %O A273353 1,2 %A A273353 _David A. Corneth_, May 20 2016