This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A273366 #24 May 21 2024 12:09:00 %S A273366 2,22,62,122,202,302,422,562,722,902,1102,1322,1562,1822,2102,2402, %T A273366 2722,3062,3422,3802,4202,4622,5062,5522,6002,6502,7022,7562,8122, %U A273366 8702,9302,9922,10562,11222,11902,12602,13322,14062,14822,15602 %N A273366 a(n) = 10*n^2 + 10*n + 2. %C A273366 These are the numbers k such that 10*k+5 is a perfect square. %H A273366 G. C. Greubel, <a href="/A273366/b273366.txt">Table of n, a(n) for n = 0..1000</a> %H A273366 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1). %F A273366 G.f.: 2*(x^2+8x+1)/(1-x)^3. %F A273366 From _G. C. Greubel_, May 20 2016: (Start) %F A273366 E.g.f.: 2*(1 + 10*x + 5*x^2)*exp(x). %F A273366 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End) %F A273366 a(n) = 2*A062786(n+1). - _R. J. Mathar_, Jun 03 2016 %F A273366 Sum_{n>=0} 1/a(n) = Pi/(2*sqrt(5)) * tan(Pi/(2*sqrt(5))) (A350760). - _Amiram Eldar_, Jan 20 2022 %t A273366 LinearRecurrence[{3,-3,1}, {2, 22, 62}, 50] (* _G. C. Greubel_, May 20 2016 *) %t A273366 Table[10n^2+10n+2,{n,0,40}] (* _Harvey P. Dale_, May 21 2024 *) %o A273366 (PARI) a(n)=10*n^2+10*n+2 \\ _Charles R Greathouse IV_, Jan 31 2017 %Y A273366 Cf. A062786, A132356, A273365, A273367, A273368, A350760. %Y A273366 Cf. A033583 (perfect squares ending in 0 in base 10 with final 0 removed). %K A273366 nonn,easy %O A273366 0,1 %A A273366 _Nathan Fox_, _Brooke Logan_, and _N. J. A. Sloane_, May 20 2016