A273371 Numbers k such that (17*10^k - 77)/3 is prime.
1, 2, 3, 6, 9, 15, 21, 26, 33, 42, 131, 168, 434, 464, 501, 1004, 1011, 1089, 1509, 2025, 2283, 2526, 9150, 9464, 14139, 14827, 18941, 32426, 36719, 42933, 138569
Offset: 1
Examples
3 is in this sequence because (17*10^3-77)/3 = 5641 is prime. Initial terms and associated primes: a(1) = 1, 31; a(2) = 2, 541; a(3) = 3, 5641; a(4) = 6, 5666641; a(5) = 9, 5666666641, etc.
Links
- Makoto Kamada, Factorization of near-repdigit-related numbers.
- Makoto Kamada, Search for 56w41.
Programs
-
Mathematica
Select[Range[0, 100000], PrimeQ[(17*10^# - 77)/3] &]
-
PARI
is(n)=ispseudoprime((17*10^n - 77)/3) \\ Charles R Greathouse IV, Jun 13 2017
Extensions
a(31) from Robert Price, Aug 21 2019
Comments