This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A273398 #15 Jan 20 2017 18:27:58 %S A273398 1,1,1,2,5,42,1430,742900,24466267020,812944042149730764, %T A273398 1759414616608818870992479875972, %U A273398 254224158304000796523953440778841647086547372026600,161115593562260183597018076262500259385225118963936327496691227156776984827584194180 %N A273398 a(n) = Catalan(Fibonacci(n)). %C A273398 Next term, a(13), which has 137 digits, is too large to include. Counterpart to A273397. %C A273398 The number of digits of a(n) grows fast exceeding 10^6 for n=32. It grows faster than Fibonacci(n-2) but slower than Fibonacci(n) or Fibonacci(n-1) and even slower than the same number for A273397 which grows faster than Fibonacci(n). %H A273398 Alois P. Heinz, <a href="/A273398/b273398.txt">Table of n, a(n) for n = 0..17</a> %F A273398 a(n) = A000108(A000045(n)). %e A273398 For n=4, a(4)=Catalan(Fibonacci(4))=Catalan(3)=5. %p A273398 a:= n-> (f-> binomial(2*f, f)/(f+1))((<<0|1>, <1|1>>^n)[1, 2]): %p A273398 seq(a(n), n=0..12); # _Alois P. Heinz_, Jan 20 2017 %t A273398 CatalanNumber[Fibonacci[Range[0,12]]] %t A273398 Table[CatalanNumber[Fibonacci[n]], {n, 0,12}] %o A273398 (PARI) for(n=0,12, fn=fibonacci(n); print1(binomial(2*fn, fn)/(fn+1) ",")) %Y A273398 Cf. A000108(Catalan), A000045 (Fibonacci), A263986, A273397 (related sequences with Fibonacci and Catalan numbers). %K A273398 nonn,easy %O A273398 0,4 %A A273398 _Waldemar Puszkarz_, May 21 2016