cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273404 Number of ordered ways to write n as x^2 + y^2 + z^2 + w^2 with x + 24*y a square, where x,y,z,w are nonnegative integers with z <= w.

Original entry on oeis.org

1, 2, 3, 2, 2, 3, 3, 2, 1, 3, 4, 2, 1, 2, 2, 2, 2, 3, 5, 2, 3, 3, 2, 1, 1, 4, 5, 4, 2, 2, 4, 3, 3, 3, 6, 2, 6, 5, 3, 3, 3, 7, 6, 2, 2, 5, 4, 1, 2, 3, 7, 6, 8, 4, 5, 5, 2, 4, 5, 2, 3, 5, 3, 4, 2, 5, 9, 4, 5, 4, 5, 1, 3, 5, 4, 5, 5, 4, 2, 3, 3
Offset: 0

Views

Author

Zhi-Wei Sun, May 21 2016

Keywords

Comments

Conjecture: a(n) > 0 for all n = 0,1,2,..., and a(n) = 1 only for n = 0, 16^k*m (k = 0,1,2,... and m = 8, 12, 23, 24, 47, 71, 168, 344, 632).
For more conjectural refinements of Lagrange's four-square theorem, one may consult arXiv:1604.06723.

Examples

			a(8) = 1 since 8 = 0^2 + 0^2 + 2^2 + 2^2 with 0 + 24*0 = 0^2.
a(12) = 1 since 12 = 1^2 + 1^2 + 1^2 + 3^2 with 1 + 24*1 = 5^2.
a(23) = 1 since 23 = 1^2 + 2^2 + 3^2 + 3^2 with 1 + 24*2 = 7^2.
a(24) = 1 since 24 = 4^2 + 0^2 + 2^2 + 2^2 with 4 + 24*0 = 2^2.
a(47) = 1 since 47 = 1^2 + 1^2 + 3^2 + 6^2 with 1 + 24*1 = 5^2.
a(71) = 1 since 71 = 1^2 + 5^2 + 3^2 + 6^2 with 1 + 24*5 = 11^2.
a(168) = 1 since 168 = 4^2 + 4^2 + 6^2 + 10^2 with 4 + 24*4 = 10^2.
a(344) = 1 since 344 = 4^2 + 0^2 + 2^2 + 18^2 with 4 + 24*0 = 2^2.
a(632) = 1 since 632 = 0^2 + 6^2 + 14^2 + 20^2 with 0 + 24*6 = 12^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
    Do[r=0;Do[If[SQ[n-x^2-y^2-z^2]&&SQ[x+24y],r=r+1],{x,0,Sqrt[n]},{y,0,Sqrt[n-x^2]},{z,0,Sqrt[(n-x^2-y^2)/2]}];Print[n," ",r];Label[aa];Continue,{n,0,80}]