This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A273429 #18 Feb 11 2017 11:21:59 %S A273429 1,2,2,2,2,2,2,1,1,3,3,2,2,2,2,1,1,3,4,3,2,2,2,1,1,3,4,4,2,2,3,1,1,3, %T A273429 4,3,3,3,3,2,1,4,4,2,2,3,3,1,1,3,5,5,3,3,5,3,1,3,3,3,2,2,4,2,2,5,7,5, %U A273429 4,5,4,1,3,6,6,6,4,4,4,1,2 %N A273429 Number of ordered ways to write n as x^6 + y^2 + z^2 + w^2, where x,y,z,w are nonnegative integers with y <= z <= w. %C A273429 The author proved in arXiv:1604.06723 that for each c = 1, 4 any natural number can be written as c*x^6 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers. Thus a(n) > 0 for all n = 0,1,2,.... %C A273429 We note that a(n) = 1 for the following values of n not divisible by 2^6: 7, 8, 15, 16, 23, 24, 31, 32, 40, 47, 48, 56, 71, 79, 92, 112, 143, 176, 191, 240, 304, 368, 560, 624, 688, 752, 1072, 1136, 1456, 1520, 1840, 1904, 2608, 2672, 3760, 3824, 6512, 6896. %C A273429 For more conjectural refinements of Lagrange's four-square theorem, one may consult the author's preprint arXiv:1604.06723. %H A273429 Zhi-Wei Sun, <a href="/A273429/b273429.txt">Table of n, a(n) for n = 0..10000</a> %H A273429 Zhi-Wei Sun, <a href="http://arxiv.org/abs/1604.06723">Refining Lagrange's four-square theorem</a>, arXiv:1604.06723 [math.NT], 2016-2017. %H A273429 Zhi-Wei Sun, <a href="http://dx.doi.org/10.1016/j.jnt.2016.11.008">Refining Lagrange's four-square theorem</a>, J. Number Theory 175(2017), 167-190. %e A273429 a(7) = 1 since 7 = 1^6 + 1^2 + 1^2 + 2^2 with 1 = 1 < 2. %e A273429 a(8) = 1 since 8 = 0^6 + 0^2 + 2^2 + 2^2 with 0 < 2 = 2. %e A273429 a(15) = 1 since 15 = 1^6 + 1^2 + 2^2 + 3^2 with 1 < 2 < 3. %e A273429 a(16) = 1 since 16 = 0^6 + 0^2 + 0^2 + 4^2 with 0 = 0 < 4. %e A273429 a(56) = 1 since 56 = 0^6 + 2^2 + 4^2 + 6^2 with 2 < 4 < 6. %e A273429 a(71) = 1 since 71 = 1^6 + 3^2 + 5^2 + 6^2 with 3 < 5 < 6. %e A273429 a(79) = 1 since 79 = 1^6 + 2^2 + 5^2 + 7^2 with 2 < 5 < 7. %e A273429 a(92) = 1 since 92 = 1^6 + 1^2 + 3^2 + 9^2 with 1 < 3 < 9. %e A273429 a(143) = 1 since 143 = 1^6 + 5^2 + 6^2 + 9^2 with 5 < 6 < 9. %e A273429 a(191) = 1 since 191 = 1^6 + 3^2 + 9^2 + 10^2 with 3 < 9 < 10. %e A273429 a(624) = 1 since 624 = 2^6 + 4^2 + 12^2 + 20^2 with 4 < 12 < 20. %e A273429 a(2672) = 1 since 2672 = 2^6 + 4^2 + 36^2 + 36^2 with 4 < 36 = 36. %e A273429 a(3760) = 1 since 3760 = 0^6 + 4^2 + 12^2 + 60^2 with 4 < 12 < 60. %e A273429 a(3824) = 1 since 3824 = 2^6 + 4^2 + 12^2 + 60^2 with 4 < 12 < 60. %e A273429 a(6512) = 1 since 6512 = 2^6 + 12^2 + 52^2 + 60^2 with 12 < 52 < 60. %e A273429 a(6896) = 1 since 6896 = 2^6 + 36^2 + 44^2 + 60^2 with 36 < 44 < 60. %t A273429 SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]] %t A273429 Do[r=0;Do[If[SQ[n-x^6-y^2-z^2],r=r+1],{x,0,n^(1/6)},{y,0,Sqrt[(n-x^6)/3]},{z,y,Sqrt[(n-x^6-y^2)/2]}];Print[n," ",r];Continue,{n,0,80}] %Y A273429 Cf. A000118, A000290, A001014, A260625, A261876, A262357, A267121, A268197, A268507, A269400, A270073, A270969, A271510, A271513, A271518, A271608, A271665, A271714, A271721, A271724, A271775, A271778, A271824, A272084, A272332, A272351, A272620, A272888, A272977, A273021, A273107, A273108, A273110, A273134, A273278, A273294, A273302, A273404, A273432, A273568. %K A273429 nonn %O A273429 0,2 %A A273429 _Zhi-Wei Sun_, May 22 2016