cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273432 Number of ordered ways to write n as x^2 + y^2 + z^2 + w^2 with 2*x + y - z a nonnegative cube, where x,y,z,w are nonnegative integers with y <= z.

Original entry on oeis.org

1, 1, 2, 2, 1, 1, 4, 1, 1, 3, 1, 3, 2, 1, 3, 3, 2, 3, 5, 2, 3, 4, 6, 1, 3, 5, 1, 6, 1, 3, 7, 2, 2, 5, 6, 5, 6, 3, 6, 4, 1, 3, 4, 5, 4, 5, 7, 2, 3, 8, 6, 7, 3, 4, 8, 3, 2, 6, 3, 5, 7, 3, 8, 7, 2, 4, 10, 4, 4, 7, 9, 7, 2, 4, 2, 7, 3, 5, 11, 2, 4
Offset: 0

Views

Author

Zhi-Wei Sun, May 22 2016

Keywords

Comments

Conjecture: (i) For each c = 1, 2, 4 and n = 0,1,2,..., we can write n as x^2 + y^2 + z^2 + w^2 with c*(2x+y-z) a nonnegative cube, where x,y,z,w are nonnegative integers with y <= z.
(ii) Each n = 0,1,2,.... can be written as x^2 + y^2 + z^2 + w^2 with x-y+z a nonnegative cube, where x,y,z,w are integers with x >= y >= 0 and x >= |z|.
The author proved in arXiv:1604.06723 that for each a = 1, 2 any natural number can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w integers such that x + y + a*z is a cube.
See also A273458 for a similar conjecture.
For more conjectural refinements of Lagrange's four-square theorem, see the author's preprint arXiv:1604.06723.

Examples

			a(1) = 1 since 1 = 0^2 + 0^2 + 0^2 + 1^2 with 0 = 0 and 2*0 + 0 - 0 = 0^3.
a(4) = 1 since 4 = 0^2 + 0^2 + 0^2 + 2^2 with 0 = 0 and 2*0 + 0 - 0 = 0^3.
a(8) = 1 since 8 = 0^2 + 2^2 + 2^2 + 0^2 with 2 = 2 and 2*0 + 2 - 2 = 0^3.
a(10) = 1 since 10 = 1^2 + 1^2 + 2^2 + 2^2 with 1 < 2 and 2*1 + 1 - 2 = 1^3.
a(13) = 1 since 13 = 2^2 + 0^2 + 3^2 + 0^2 with 0 < 3 and 2*2 + 0 - 3 = 1^3.
a(23) = 1 since 23 = 1^2 + 2^2 + 3^2 + 3^2 with 2 < 3 and 2*1 + 2 - 3 = 1^3.
a(26) = 1 since 26 = 1^2 + 3^2 + 4^2 + 0^2 with 3 < 4 and 2*1 + 3 - 4 = 1^3.
a(28) = 1 since 28 = 4^2 + 2^2 + 2^2 + 2^2 with 2 = 2 and 2*4 + 2 - 2 = 2^3.
a(40) = 1 since 40 = 4^2 + 2^2 + 2^2 + 4^2 with 2 = 2 and 2*4 + 2 - 2 = 2^3.
a(104) = 1 since 104 = 4^2 + 6^2 + 6^2 + 4^2 with 6 = 6 and 2*4 + 6 - 6 = 2^3.
a(138) = 1 since 138 = 3^2 + 5^2 + 10^2 + 2^2 with 5 < 10 and 2*3 + 5 - 10 =1^3.
a(200) = 1 since 200 = 0^2 + 10^2 + 10^2 + 0^2 with 10 = 10 and 2*0 + 10 - 10 = 0^3.
a(296) = 1 since 296 = 8^2 + 6^2 + 14^2 + 0^2 with 6 < 14 and 2*8 + 6 - 14 = 2^3.
a(328) = 1 since 328 = 0^2 + 6^2 + 6^2 + 16^2 with 6 = 6 and 2*0 + 6 - 6 = 0^3.
a(520) = 1 since 520 = 4^2 + 2^2 + 10^2 + 20^2 with 2 < 10 and 2*4 + 2 - 10 = 0^3.
a(776) = 1 since 776 = 0^2 + 10^2 + 10^2 + 24^2 with 10 = 10 and 2*0 + 10 - 10 = 0^3.
a(1832) = 1 since 1832 = 4^2 + 30^2 + 30^2 + 4^2 with 30 = 30 and 2*4 + 30 - 30 = 2^3.
a(2976) = 1 since 2976 = 20^2 + 16^2 + 48^2 + 4^2 with 16 < 48 and 2*20 + 16 - 48 = 2^3.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
    CQ[n_]:=CQ[n]=IntegerQ[n^(1/3)]
    Do[r=0;Do[If[SQ[n-x^2-y^2-z^2]&&CQ[2x+y-z],r=r+1],{x,0,n^(1/2)},{y,0,Sqrt[(n-x^2)/2]},{z,y,Min[2x+y,Sqrt[n-x^2-y^2]]}];Print[n," ",r];Continue,{n,0,80}]