A273432 Number of ordered ways to write n as x^2 + y^2 + z^2 + w^2 with 2*x + y - z a nonnegative cube, where x,y,z,w are nonnegative integers with y <= z.
1, 1, 2, 2, 1, 1, 4, 1, 1, 3, 1, 3, 2, 1, 3, 3, 2, 3, 5, 2, 3, 4, 6, 1, 3, 5, 1, 6, 1, 3, 7, 2, 2, 5, 6, 5, 6, 3, 6, 4, 1, 3, 4, 5, 4, 5, 7, 2, 3, 8, 6, 7, 3, 4, 8, 3, 2, 6, 3, 5, 7, 3, 8, 7, 2, 4, 10, 4, 4, 7, 9, 7, 2, 4, 2, 7, 3, 5, 11, 2, 4
Offset: 0
Keywords
Examples
a(1) = 1 since 1 = 0^2 + 0^2 + 0^2 + 1^2 with 0 = 0 and 2*0 + 0 - 0 = 0^3. a(4) = 1 since 4 = 0^2 + 0^2 + 0^2 + 2^2 with 0 = 0 and 2*0 + 0 - 0 = 0^3. a(8) = 1 since 8 = 0^2 + 2^2 + 2^2 + 0^2 with 2 = 2 and 2*0 + 2 - 2 = 0^3. a(10) = 1 since 10 = 1^2 + 1^2 + 2^2 + 2^2 with 1 < 2 and 2*1 + 1 - 2 = 1^3. a(13) = 1 since 13 = 2^2 + 0^2 + 3^2 + 0^2 with 0 < 3 and 2*2 + 0 - 3 = 1^3. a(23) = 1 since 23 = 1^2 + 2^2 + 3^2 + 3^2 with 2 < 3 and 2*1 + 2 - 3 = 1^3. a(26) = 1 since 26 = 1^2 + 3^2 + 4^2 + 0^2 with 3 < 4 and 2*1 + 3 - 4 = 1^3. a(28) = 1 since 28 = 4^2 + 2^2 + 2^2 + 2^2 with 2 = 2 and 2*4 + 2 - 2 = 2^3. a(40) = 1 since 40 = 4^2 + 2^2 + 2^2 + 4^2 with 2 = 2 and 2*4 + 2 - 2 = 2^3. a(104) = 1 since 104 = 4^2 + 6^2 + 6^2 + 4^2 with 6 = 6 and 2*4 + 6 - 6 = 2^3. a(138) = 1 since 138 = 3^2 + 5^2 + 10^2 + 2^2 with 5 < 10 and 2*3 + 5 - 10 =1^3. a(200) = 1 since 200 = 0^2 + 10^2 + 10^2 + 0^2 with 10 = 10 and 2*0 + 10 - 10 = 0^3. a(296) = 1 since 296 = 8^2 + 6^2 + 14^2 + 0^2 with 6 < 14 and 2*8 + 6 - 14 = 2^3. a(328) = 1 since 328 = 0^2 + 6^2 + 6^2 + 16^2 with 6 = 6 and 2*0 + 6 - 6 = 0^3. a(520) = 1 since 520 = 4^2 + 2^2 + 10^2 + 20^2 with 2 < 10 and 2*4 + 2 - 10 = 0^3. a(776) = 1 since 776 = 0^2 + 10^2 + 10^2 + 24^2 with 10 = 10 and 2*0 + 10 - 10 = 0^3. a(1832) = 1 since 1832 = 4^2 + 30^2 + 30^2 + 4^2 with 30 = 30 and 2*4 + 30 - 30 = 2^3. a(2976) = 1 since 2976 = 20^2 + 16^2 + 48^2 + 4^2 with 16 < 48 and 2*20 + 16 - 48 = 2^3.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
- Zhi-Wei Sun, Refining Lagrange's four-square theorem, arXiv:1604.06723 [math.GM], 2016.
Crossrefs
Cf. A000118, A000290, A000578, A260625, A261876, A262357, A267121, A268197, A268507, A269400, A270073, A270969, A271510, A271513, A271518, A271608, A271665, A271714, A271721, A271724, A271775, A271778, A271824, A272084, A272332, A272351, A272620, A272888, A272977, A273021, A273107, A273108, A273110, A273134, A273278, A273294, A273302, A273404, A273429, A273458, A273568.
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]] CQ[n_]:=CQ[n]=IntegerQ[n^(1/3)] Do[r=0;Do[If[SQ[n-x^2-y^2-z^2]&&CQ[2x+y-z],r=r+1],{x,0,n^(1/2)},{y,0,Sqrt[(n-x^2)/2]},{z,y,Min[2x+y,Sqrt[n-x^2-y^2]]}];Print[n," ",r];Continue,{n,0,80}]
Comments