This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A273445 #24 Dec 16 2018 03:29:25 %S A273445 15,12,8,11,7,14,4,13,7,12,4,15,4,9,6,10,5,16,2,20,3,14,7,11,2,13,5, %T A273445 11,3,14,3,9,6,13,3,17,3,14,4,10,4,20,3,15,3,12,1,15,2,20,4,11,3,13,3, %U A273445 16,3,12,3,15,3,12,5,9,4,15,2,14,5,17,3,13 %N A273445 a(n) is the number of solutions of the equation n = A001617(k). %C A273445 The zeros of the sequence are given by A054729. The first five zeros of the sequence have indexes 150, 180, 210, 286, 304. %H A273445 Gheorghe Coserea, <a href="/A273445/b273445.txt">Table of n, a(n) for n = 0..100001</a> %H A273445 J. A. Csirik, M. Zieve, and J. Wetherell, <a href="http://arXiv.org/abs/math/0006096">On the genera of X0(N)</a>, arXiv:math/0006096 [math.NT], 2000. %F A273445 a(n) = card {k, n = A001617(k)}. %e A273445 For n = 0 the a(0) = 15 solutions are: %e A273445 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 25 (A091401). %e A273445 For n = 1 the a(1) = 12 solutions are: %e A273445 11, 14, 15, 17, 19, 20, 21, 24, 27, 32, 36, 49 (A091403). %e A273445 For n = 2 the a(2) = 8 solutions are: %e A273445 22, 23, 26, 28, 29, 31, 37, 50 (A091404). %t A273445 (* b = A001617 *) nmax = 71; %t A273445 b[n_] := b[n] = If[n < 1, 0, 1 + Sum[ MoebiusMu[ d]^2 n/d / 12 - EulerPhi[ GCD[ d, n/d]] / 2, {d, Divisors[n]}] - Count[(#^2 - # + 1)/n& /@ Range[n], _?IntegerQ]/3 -Count[(#^2 + 1)/n& /@ Range[n], _?IntegerQ]/4]; %t A273445 Clear[f]; %t A273445 f[m_] := f[m] = Module[{}, A001617 = Array[b, m]; a[n_] := Count[A001617, n]; Table[a[n], {n, 0, nmax}]]; %t A273445 f[m = nmax]; f[m = m + nmax]; %t A273445 While[Print["m = ", m]; f[m] != f[m - nmax], m = m + nmax]; %t A273445 A273445 = f[m] (* _Jean-François Alcover_, Dec 16 2018, using _Michael Somos_' code for A001617 *) %o A273445 (PARI) %o A273445 A000089(n) = { %o A273445 if (n%4 == 0 || n%4 == 3, return(0)); %o A273445 if (n%2 == 0, n \= 2); %o A273445 my(f = factor(n), fsz = matsize(f)[1]); %o A273445 prod(k = 1, fsz, if (f[k,1] % 4 == 3, 0, 2)); %o A273445 }; %o A273445 A000086(n) = { %o A273445 if (n%9 == 0 || n%3 == 2, return(0)); %o A273445 if (n%3 == 0, n \= 3); %o A273445 my(f = factor(n), fsz = matsize(f)[1]); %o A273445 prod(k = 1, fsz, if (f[k,1] % 3 == 2, 0, 2)); %o A273445 }; %o A273445 A001615(n) = { %o A273445 my(f = factor(n), fsz = matsize(f)[1], %o A273445 g = prod(k=1, fsz, (f[k,1]+1)), %o A273445 h = prod(k=1, fsz, f[k,1])); %o A273445 return((n*g)\h); %o A273445 }; %o A273445 A001616(n) = { %o A273445 my(f = factor(n), fsz = matsize(f)[1]); %o A273445 prod(k = 1, fsz, f[k,1]^(f[k,2]\2) + f[k,1]^((f[k,2]-1)\2)); %o A273445 }; %o A273445 A001617(n) = 1 + A001615(n)/12 - A000089(n)/4 - A000086(n)/3 - A001616(n)/2; %o A273445 seq(n) = { %o A273445 my(a = vector(n+1,g,0), bnd = 12*n + 18*sqrtint(n) + 100, g); %o A273445 for (k = 1, bnd, g = A001617(k); %o A273445 if (g <= n, a[g+1]++)); %o A273445 return(a); %o A273445 }; %o A273445 seq(72) %Y A273445 Cf. A001617, A054729, A091401, A091403, A091404. %K A273445 nonn %O A273445 0,1 %A A273445 _Gheorghe Coserea_, May 22 2016