cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273458 Number of ordered ways to write n as x^2 + y^2 + z^2 + w^2 with x-y+z+w a nonnegative cube, where x,y,z,w are integers with x >= y >= 0 and x >= |z| <= |w|.

Original entry on oeis.org

1, 2, 2, 3, 2, 2, 3, 3, 2, 2, 3, 2, 1, 5, 4, 3, 2, 1, 4, 3, 3, 6, 3, 2, 5, 3, 9, 3, 1, 1, 7, 5, 3, 7, 10, 4, 6, 2, 10, 2, 6, 2, 12, 7, 2, 5, 9, 3, 3, 6, 13, 3, 8, 3, 18, 3, 8, 5, 7, 3, 3, 5, 13, 8, 5, 3, 19, 4, 7, 7, 16, 1, 11, 5, 14, 7, 2, 3, 12, 5, 4
Offset: 0

Views

Author

Zhi-Wei Sun, May 22 2016

Keywords

Comments

Conjecture: a(n) > 0 for all n = 0,1,2,....
In the latest version of arXiv:1605.03074, the authors showed that any natural number can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w integers such that x + y + z + w is a cube (or a square).
For more conjectural refinements of Lagrange's four-square theorem, see the author's preprint arXiv:1604.06723.

Examples

			a(12) = 1 since 12 = 3^2 + 1^2 + (-1)^2 + (-1)^2 with 3 - 1 + (-1) + (-1) = 0^3.
a(17) = 1 since 17 = 2^2 + 0^2 + 2^2 + (-3)^2 with 2 - 0 + 2 + (-3) = 1^3.
a(28) = 1 since 28 = 3^2 + 1^2 + 3^2 + 3^2 with 3 - 1 + 3 + 3 = 2^3.
a(29) = 1 since 29 = 3^2 + 0^2 + 2^2 + (-4)^2 with 3 - 0 + 2 + (-4) = 1^3.
a(71) = 1 since 71 = 5^2 + 1^2 + 3^2 + (-6)^2 with 5 - 1 + 3 + (-6) = 1^3.
a(149) = 1 since 149 = 8^2 + 0^2 + 2^2 + (-9)^2 with 8 - 0 + 2 + (-9) = 1^3.
a(188) = 1 since 188 = 13^2 + 3^2 + 1^2 + (-3)^2 with 13 - 3 + 1 + (-3) = 2^3.
a(284) = 1 since 284 = 15^2 + 5^2 + 3^2 + (-5)^2 with 15 - 5 + 3 + (-5) = 2^3.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
    CQ[n_]:=CQ[n]=n>=0&&IntegerQ[n^(1/3)]
    Do[r=0;Do[If[SQ[n-x^2-y^2-z^2]&&CQ[x-y+(-1)^j*z+(-1)^k*Sqrt[n-x^2-y^2-z^2]],r=r+1],{y,0,(n/2)^(1/2)},{x,y,Sqrt[n-y^2]},{z,0,Min[x,Sqrt[(n-x^2-y^2)/2]]},{j,0,Min[1,z]},{k,0,Min[1,Sqrt[n-x^2-y^2-z^2]]}];
    Print[n," ",r];Continue,{n,0,80}]