cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273487 Density of numbers without prime exponents in their factorization.

Original entry on oeis.org

6, 5, 0, 4, 4, 5, 6, 0, 8, 4, 2, 1, 9, 1, 2, 6, 9, 1, 3, 9, 0, 4, 4, 4, 3, 6, 1, 1, 0, 4, 6, 5, 9, 6, 4, 5, 5, 7, 7, 0, 1, 0, 2, 9, 6, 9, 2, 2, 0, 5, 4, 9, 7, 6, 0, 2, 0, 1, 9, 3, 5, 8, 8, 5, 5, 5, 2, 3, 4, 2, 8, 6, 9, 1, 6, 8, 2, 1, 3, 6, 7, 7, 4, 9, 3
Offset: 0

Views

Author

Keywords

Examples

			0.6504456084219126913904443611046...
		

Crossrefs

Density of A274034.

Programs

  • Maple
    eser := 1-x^2+x^4 ;
    for pidx from 3 to 100 do
        p := ithprime(pidx) ;
        eser := eser -x^p+x^(p+1) ;
    end do:
    eser := taylor(eser,x=0,p) ;
    gfun[seriestolist](eser) ;
    subsop(1=NULL,%) ;
    L := EULERi(%) ;
    Digits := 180 ;
    x := 1.0 ;
    for i from 2 to nops(L) do
        if op(i,L) <> 0 then
            x := x*evalf(Zeta(i)^op(i,L)) ;
            printf("%.70f\n",x) ;
        fi ;
    end do; # R. J. Mathar, Jul 11 2016
  • PARI
    leps=log(2)*(1-bitprecision(1.))
    f(x)=my(s=0.);forprime(p=2,1-leps/log(x),s+=x^-p);s
    6/Pi^2*prodeuler(p=2,1e6,(1-(1-1/p)*f(p))/(1-1/p^2))

Formula

Prod_{p prime} 1 - (1 - 1/p)*Sum_{q prime} p^-q.