A273487 Density of numbers without prime exponents in their factorization.
6, 5, 0, 4, 4, 5, 6, 0, 8, 4, 2, 1, 9, 1, 2, 6, 9, 1, 3, 9, 0, 4, 4, 4, 3, 6, 1, 1, 0, 4, 6, 5, 9, 6, 4, 5, 5, 7, 7, 0, 1, 0, 2, 9, 6, 9, 2, 2, 0, 5, 4, 9, 7, 6, 0, 2, 0, 1, 9, 3, 5, 8, 8, 5, 5, 5, 2, 3, 4, 2, 8, 6, 9, 1, 6, 8, 2, 1, 3, 6, 7, 7, 4, 9, 3
Offset: 0
Examples
0.6504456084219126913904443611046...
Crossrefs
Density of A274034.
Programs
-
Maple
eser := 1-x^2+x^4 ; for pidx from 3 to 100 do p := ithprime(pidx) ; eser := eser -x^p+x^(p+1) ; end do: eser := taylor(eser,x=0,p) ; gfun[seriestolist](eser) ; subsop(1=NULL,%) ; L := EULERi(%) ; Digits := 180 ; x := 1.0 ; for i from 2 to nops(L) do if op(i,L) <> 0 then x := x*evalf(Zeta(i)^op(i,L)) ; printf("%.70f\n",x) ; fi ; end do; # R. J. Mathar, Jul 11 2016
-
PARI
leps=log(2)*(1-bitprecision(1.)) f(x)=my(s=0.);forprime(p=2,1-leps/log(x),s+=x^-p);s 6/Pi^2*prodeuler(p=2,1e6,(1-(1-1/p)*f(p))/(1-1/p^2))
Formula
Prod_{p prime} 1 - (1 - 1/p)*Sum_{q prime} p^-q.