This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A273492 #31 Sep 03 2016 16:56:48 %S A273492 10,12,14,16,18,21,23,25,27,29,30,32,34,36,38,41,43,45,47,49,50,52,54, %T A273492 56,58,61,63,65,67,69,70,72,74,76,78,81,83,85,87,89,90,92,94,96,98, %U A273492 1000,1001,1002,1004,1005,1006,1008,1009,1010,1011,1013,1014,1015,1017,1018,1019,1020,1022,1023,1024 %N A273492 Numbers n such that the average of different permutations of digits of n is not an integer. %C A273492 Complement of A275945. %C A273492 Permutations with a first digit of 0 are included in the average (i.e. 0010 is taken to be 10, 01 is taken to be 1, etc.). %C A273492 From _Robert Israel_, Sep 01 2016: (Start) %C A273492 n such that A002275(A055642(n))*A007953(n) is not divisible by A055642(n). %C A273492 In particular, contains no k-digit numbers if k is in A014950. (End) %H A273492 Robert Israel, <a href="/A273492/b273492.txt">Table of n, a(n) for n = 1..10000</a> %e A273492 12 is a term because (12+21) = 33 is not divisible by 2. %e A273492 1000 is a term because (1+10+100+1000) = 1111 is not divisible by 4. %e A273492 123 is not a term because (123+132+213+231+312+321) is divisible by 6. %e A273492 1001 is a term because (11+101+110+1001+1010+1100) is not divisible by 6. %p A273492 f:= proc(n) local L,d,s; %p A273492 L:= convert(n,base,10); %p A273492 d:= nops(L); %p A273492 s:= convert(L,`+`); %p A273492 evalb(s*(10^d-1)/9 mod d = 0) %p A273492 end proc: %p A273492 remove(f, [$1..10000]); # _Robert Israel_, Sep 01 2016 %t A273492 Select[Range[2^10], ! IntegerQ@ Mean@ Map[FromDigits, Permutations@ #] &@ IntegerDigits@ # &] (* _Michael De Vlieger_, Aug 29 2016 *) %o A273492 (PARI) A055642(n) = #Str(n); %o A273492 A007953(n) = sumdigits(n); %o A273492 for(n=1, 2000, if((((10^A055642(n)-1)/9)*A007953(n)) % A055642(n) != 0, print1(n, ", "))); %Y A273492 Cf. A002275, A014950, A055642, A066642, A007953, A045876, A055642, A275945. %K A273492 easy,base,nonn %O A273492 1,1 %A A273492 _Altug Alkan_, Aug 29 2016