A275945 Numbers n such that the average of different permutations of digits of n is an integer.
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 19, 20, 22, 24, 26, 28, 31, 33, 35, 37, 39, 40, 42, 44, 46, 48, 51, 53, 55, 57, 59, 60, 62, 64, 66, 68, 71, 73, 75, 77, 79, 80, 82, 84, 86, 88, 91, 93, 95, 97, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111
Offset: 1
Examples
97 is a term because (97+79) is divisible by 2. 100 is a term because (1+10+100) is divisible by 3. 123 is a term because (123+132+213+231+312+321) is divisible by 6. 1001 is not a term because (11+101+110+1001+1010+1100) is not divisible by 6.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(n) local L, d, s; L:= convert(n, base, 10); d:= nops(L); s:= convert(L, `+`); evalb(s*(10^d-1)/9 mod d = 0) end proc: select(f, [$1..10000]); # Robert Israel, Sep 01 2016
-
Mathematica
Select[Range@ 111, IntegerQ@ Mean@ Map[FromDigits, Permutations@ #] &@ IntegerDigits@ # &] (* Michael De Vlieger, Aug 29 2016 *)
-
PARI
A055642(n) = #Str(n); A007953(n) = sumdigits(n); for(n=1, 2000, if((((10^A055642(n)-1)/9)*A007953(n)) % A055642(n) == 0, print1(n, ", ")));
Comments