cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273498 Numbers that are, at the same time, the sum of: two positive squares, a positive square and a positive cube, and two positive cubes. In other words, intersection of A000404, A003325 and A055394.

Original entry on oeis.org

2, 65, 72, 128, 468, 730, 793, 1241, 1332, 1458, 2000, 2745, 3528, 4097, 4160, 4608, 4825, 5096, 5840, 5913, 6344, 8125, 8192, 9000, 9325, 9928, 12168, 13357, 13498, 14824, 15626, 15633, 15689, 16354, 17640, 18369, 18737, 19721, 19773, 21953, 22681, 27792, 29449
Offset: 1

Views

Author

Altug Alkan, May 23 2016

Keywords

Comments

Numbers n such that n = x^a + y^b where x,y > 0, is soluble for all 1 < a <= b < 4.
Perfect power terms are 128, 8192, 97344, 140625, 524288, 1500625, ...

Examples

			793 is a term because 793 = 3^2 + 28^2 = 8^2 + 9^3 = 4^3 + 9^3.
		

Crossrefs

Programs

  • PARI
    isA003325(n)=for(k=1, sqrtnint(n\2, 3), ispower(n-k^3, 3) && return(1))
    isA000404(n) = for( i=1, #n=factor(n)~%4, n[1, i]==3 && n[2, i]%2 && return); n && ( vecmin(n[1, ])==1 || (n[1, 1]==2 && n[2, 1]%2))
    isA055394(n) = for(k=1, sqrtnint(n-1, 3), if(issquare(n-k^3), return(1))); 0
    lista(nn) = for(n=1, nn, if(isA003325(n) && isA000404(n) && isA055394(n), print1(n, ", ")));
    
  • PARI
    isA000404(n)=my(f=factor(n)); for(i=1, #f~, if(f[i,1]%4==3 && f[i,2]%2, return(0))); n>1 && (vecmin(f[,1]%4)==1 || (f[1, 1]==2 && f[1,2]%2))
    isA055394(n) = for(k=1, sqrtnint(n-1,3), if(issquare(n-k^3), return(1))); 0
    list(lim)=my(v=List(),n3,t); lim\=1; for(n=1,sqrtnint(lim-1,3), n3=n^3; for(m=1,sqrtnint(lim-n3,3), t=n3+m^3; if(isA000404(t) && isA055394(t), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, May 31 2016