A273498 Numbers that are, at the same time, the sum of: two positive squares, a positive square and a positive cube, and two positive cubes. In other words, intersection of A000404, A003325 and A055394.
2, 65, 72, 128, 468, 730, 793, 1241, 1332, 1458, 2000, 2745, 3528, 4097, 4160, 4608, 4825, 5096, 5840, 5913, 6344, 8125, 8192, 9000, 9325, 9928, 12168, 13357, 13498, 14824, 15626, 15633, 15689, 16354, 17640, 18369, 18737, 19721, 19773, 21953, 22681, 27792, 29449
Offset: 1
Examples
793 is a term because 793 = 3^2 + 28^2 = 8^2 + 9^3 = 4^3 + 9^3.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
PARI
isA003325(n)=for(k=1, sqrtnint(n\2, 3), ispower(n-k^3, 3) && return(1)) isA000404(n) = for( i=1, #n=factor(n)~%4, n[1, i]==3 && n[2, i]%2 && return); n && ( vecmin(n[1, ])==1 || (n[1, 1]==2 && n[2, 1]%2)) isA055394(n) = for(k=1, sqrtnint(n-1, 3), if(issquare(n-k^3), return(1))); 0 lista(nn) = for(n=1, nn, if(isA003325(n) && isA000404(n) && isA055394(n), print1(n, ", ")));
-
PARI
isA000404(n)=my(f=factor(n)); for(i=1, #f~, if(f[i,1]%4==3 && f[i,2]%2, return(0))); n>1 && (vecmin(f[,1]%4)==1 || (f[1, 1]==2 && f[1,2]%2)) isA055394(n) = for(k=1, sqrtnint(n-1,3), if(issquare(n-k^3), return(1))); 0 list(lim)=my(v=List(),n3,t); lim\=1; for(n=1,sqrtnint(lim-1,3), n3=n^3; for(m=1,sqrtnint(lim-n3,3), t=n3+m^3; if(isA000404(t) && isA055394(t), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, May 31 2016
Comments