A273556 Decimal expansion of Rosser's constant.
8, 3, 2, 4, 2, 9, 0, 6, 5, 6, 6, 1, 9, 4, 5, 2, 7, 8, 0, 3, 0, 8, 0, 5, 9, 4, 3, 5, 3, 1, 4, 6, 5, 5, 7, 5, 0, 4, 5, 4, 4, 5, 3, 1, 8, 0, 7, 7, 4, 1, 7, 0, 5, 3, 2, 4, 0, 8, 9, 3, 9, 9, 1, 2, 9, 6, 0, 3, 4, 7, 0, 7, 1, 3, 9, 4, 8, 1, 1, 4, 2, 4, 2, 1, 9, 1, 6, 2, 7, 2, 2, 5, 0, 4, 6, 3, 8, 1
Offset: 0
Examples
0.832429065661945278030805943531465575045445318077417053240893991296...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.1 Hardy-Littlewood constants, p. 86.
Links
- J. Barkley Rosser and Lowell Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math., Vol. 6, No. 1 (1962), pp. 64-94, eq. (2.14).
- Eric Weisstein's World of Mathematics, Twin Primes Constant.
Programs
-
Mathematica
digits = 98; s[n_] := (1/n)*N[Sum[MoebiusMu[d]*2^(n/d), {d, Divisors[n]}], digits + 60]; C2 = (175/256)*Product[(Zeta[n]*(1 - 2^(-n))*(1 - 3^(-n) )*(1 - 5^(-n))*(1 - 7^(-n)))^(-s[n]), {n, 2, digits + 60}]; RealDigits[4*C2/Exp[2*EulerGamma], 10, digits] // First
-
PARI
4 * exp(-2*Euler) * prodeulerrat(1-1/(p-1)^2, 1, 3) \\ Amiram Eldar, Mar 17 2021
Formula
4*C_2/exp(2*EulerGamma), where C_2 is the twin primes constant.
Equals lim_{x->inf} Product_{2 < p <= x} (1-2/p)*log(x)^2.
Comments