A273580 Decimal expansion of the infinite nested radical sqrt(F_0 + sqrt(F_1 + sqrt(F_3 + ...))), where F_k are the Fermat numbers A000215.
2, 5, 2, 9, 5, 4, 3, 3, 2, 6, 2, 2, 0, 3, 9, 8, 4, 3, 0, 3, 1, 0, 3, 7, 9, 1, 2, 8, 8, 5, 9, 7, 5, 3, 3, 3, 5, 1, 9, 3, 5, 3, 7, 1, 2, 4, 4, 5, 9, 3, 8, 3, 4, 1, 7, 8, 6, 5, 7, 1, 8, 7, 1, 1, 3, 9, 6, 7, 3, 0, 9, 4, 6, 5, 4, 0, 4, 8, 7, 4, 8, 2, 5, 3, 1, 0, 3, 3, 5, 4, 4, 6, 0, 7, 2, 1, 5, 0, 0, 2, 3, 8, 9, 3, 3
Offset: 1
Examples
2.5295433262203984303103791288597533351935371244593834178657187113967...
Links
- Stanislav Sykora, Table of n, a(n) for n = 1..2000
Programs
-
PARI
/* This function crashes PARI beyond N=28: */ s(N)={my(r=0.0);for(k=1,N,r=sqrt(2^(2.0^(N-k))+1+r));return(r)} /* N is the number of terms to include in the evaluation. It turns out that the starting digits s(28) shares with s(27) are only 13 */
-
PARI
/* This alternative can easily generate millions of digits: */ d=vector(30);d[1]=0.5;for(n=2,#d,d[n]=d[n-1]^2); S(N)={my(r=(1+sqrt(5))/2);for(k=1,N,r=sqrt(1+d[N-k+1]+r));return(r*sqrt(2))} /* S(12) exceeds 1200 stable digits, S(20) goes over 150000. For the b-file, the first 2000 digits of S(13) were used, computed with the realprecision of 2100 digits */
Formula
Equals sqrt(2)*sqrt(1+1/2+sqrt(1+1/4+sqrt(1+1/16+sqrt(1+1/256+ ... )))).
Comments