cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273615 Numbers k such that k^4 is the average of two positive cubes while k is not.

Original entry on oeis.org

329, 518, 566, 662, 732, 741, 777, 804, 806, 876, 921, 998, 1029, 1092, 1236, 1238, 1317, 1497, 1526, 1596, 1812, 1862, 1929, 1988, 2181, 2316, 2604, 2632, 2757, 4204, 4396, 4446, 4684, 5068, 5548, 5782, 5838, 5856, 5928, 5982, 6124, 6126, 6216
Offset: 1

Views

Author

Altug Alkan, May 26 2016

Keywords

Comments

If k is the average of two positive cubes, then k^4 is also the average of two positive cubes. So this sequence focuses on the solutions that are not trivial.

Examples

			329 is a term because 329 is not the average of two positive cubes while 329^4 = (1833^3 + 2585^3)/2.
		

Crossrefs

Programs

  • Maple
    Q:=  proc(x) local t;
      for t in select(t -> t^3<=x and 4*t^3 > x and x/t - t^2 mod 3 = 0,
            numtheory:-divisors(x)) do
        if issqr((x/t - t^2)/3)  then return true fi
      od:
      false
    end proc:
    select(x -> not(Q(x)) and Q(x^4), [$1..10000]); # Robert Israel, May 26 2016
  • Mathematica
    Q[x_] := Module[{s, t}, s = Select[Divisors[x], #^3 <= x && 4*#^3 > x && Mod[x/# - #^2, 3] == 0 &]; For[t = 1, t <= Length[s], t++, If[IntegerQ@Sqrt[(x/s[[t]] - s[[t]]^2)/3],  Return[True]]]; False];
    Reap[For[x = 1, x <= 10000, x++, If[!Q[x] && Q[x^4], Print[x]; Sow[x]]]][[2, 1]] (* Jean-François Alcover, May 18 2023, after Robert Israel *)
  • PARI
    isA003325(n) = for(k=1, sqrtnint(n\2, 3), ispower(n-k^3, 3) && return(1));
    lista(nn) = for(n=1, nn, if(isA003325(2*n^4) && !isA003325(2*n), print1(n, ", ")));
    
  • PARI
    T=thueinit('z^3+1);
    isA003325(n)=#select(v->min(v[1], v[2])>0, thue(T, n))>0
    is(n)=isA003325(2*n^4) && !isA003325(2*n) \\ Charles R Greathouse IV, May 27 2016