cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273616 Number of ordered ways to write n as x^2 + y^2 + z^2 + w^2 with (3*x^2+13*y^2)*z a square, where x,y,z,w are nonnegative integers.

This page as a plain text file.
%I A273616 #8 May 27 2016 05:21:05
%S A273616 1,4,4,2,5,8,4,2,4,8,11,4,2,10,8,1,4,12,10,8,9,8,9,1,4,17,16,6,3,16,8,
%T A273616 1,4,8,18,10,8,12,13,2,10,18,9,8,5,17,11,3,2,15,22,7,13,15,17,4,6,10,
%U A273616 11,14,2,18,17,1,5,23,13,9,13,14,14,1,8,16,26,8,4,16,7,1,8
%N A273616 Number of ordered ways to write n as x^2 + y^2 + z^2 + w^2 with (3*x^2+13*y^2)*z a square, where x,y,z,w are nonnegative integers.
%C A273616 Conjecture: For each ordered pair (a,b) = (3,13), (5,11), (15,57), (15,165), (138,150), any natural number can be written as x^2 + y^2 + z^2 + w^2 with (a*x^2+b*y^2)*z a square, where x,y,z,w are nonnegative integers.
%C A273616 For more conjectural refinements of Lagrange's four-square theorem, see the author's preprint arXiv:1604.06723.
%H A273616 Zhi-Wei Sun, <a href="/A273616/b273616.txt">Table of n, a(n) for n = 0..10000</a>
%H A273616 Zhi-Wei Sun, <a href="http://arxiv.org/abs/1604.06723">Refining Lagrange's four-square theorem</a>, arXiv:1604.06723 [math.GM], 2016.
%e A273616 a(15) = 1 since 15 = 2^2 + 1^2 + 1^2 + 3^2 with (3*2^2+13*1^2)*1 = 5^2.
%e A273616 a(23) = 1 since 23 = 3^2 + 3^2 + 1^2 + 2^2 with (3*3^2+13*3^2)*1 = 12^2.
%e A273616 a(31) = 1 since 31 = 2^2 + 1^2 + 1^2 + 5^2 with (3*2^2+13*1^2)*1 = 5^2.
%e A273616 a(63) = 1 since 63 = 6^2 + 1^2 + 1^2 + 5^2 with (3*6^2+13*1^2)*1 = 11^2.
%e A273616 a(71) = 1 since 71 = 6^2 + 3^2 + 1^2 + 5^2 with (3*6^2+13*3^2)*1 = 15^2.
%e A273616 a(79) = 1 since 79 = 5^2 + 3^2 + 3^2 + 6^2 with (3*5^2+13*3^2)*3 = 24^2.
%e A273616 a(223) = 1 since 223 = 2^2 + 13^2 + 1^2 + 7^2 with (3*2^2+13*13^2)*1 = 47^2.
%e A273616 a(303) = 1 since 303 = 2^2 + 13^2 + 9^2 + 7^2 with (3*2^2+13*13^2)*9 = 141^2.
%e A273616 a(2703) = 1 since 2703 = 15^2 + 25^2 + 22^2 + 37^2 with (3*15^2+13*25^2)*22 = 440^2.
%t A273616 SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
%t A273616 Do[r=0;Do[If[SQ[n-x^2-y^2-z^2]&&SQ[(3x^2+13y^2)z],r=r+1],{x,0,Sqrt[n]},{y,0,Sqrt[n-x^2]},{z,0,Sqrt[n-x^2-y^2]}];Print[n," ",r];Label[aa];Continue,{n,0,80}]
%Y A273616 Cf. A000118, A000290, A260625, A261876, A262357, A267121, A268197, A268507, A269400, A270073, A270969, A271510, A271513, A271518, A271608, A271665, A271714, A271721, A271724, A271775, A271778, A271824, A272084, A272332, A272351, A272620, A272888, A272977, A273021, A273107, A273108, A273110, A273134, A273278, A273294, A273302, A273404, A273429, A273432, A273458, A273568.
%K A273616 nonn
%O A273616 0,2
%A A273616 _Zhi-Wei Sun_, May 26 2016