cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273636 Decimal expansion of ((Pi*(15+7*sqrt(5))^2)/(12*(25+10*sqrt(5))^(3/2)))^(1/3), the sphericity of the dodecahedron.

This page as a plain text file.
%I A273636 #19 Jun 29 2023 09:03:04
%S A273636 9,1,0,4,5,3,1,8,1,4,0,9,2,4,2,2,7,9,1,6,9,5,3,8,0,3,4,4,6,6,2,5,8,6,
%T A273636 2,8,5,7,4,5,8,6,5,8,0,2,9,4,3,3,8,0,1,2,6,5,0,6,1,5,5,4,9,9,2,1,3,6,
%U A273636 4,6,6,2,5,0,0,5,2,6,4,8,2,1,0,7,1,1
%N A273636 Decimal expansion of ((Pi*(15+7*sqrt(5))^2)/(12*(25+10*sqrt(5))^(3/2)))^(1/3), the sphericity of the dodecahedron.
%H A273636 Wikipedia, <a href="http://en.wikipedia.org/wiki/Sphericity">Sphericity</a>.
%H A273636 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%e A273636 0.91045318140924227916953803446625862857458658029433801265061554...
%t A273636 RealDigits[((Pi*(15 + 7*Sqrt[5])^2)/(12*(25 + 10*Sqrt[5])^(3/2)))^(1/3), 10, 120][[1]] (* _Amiram Eldar_, Jun 29 2023 *)
%o A273636 (PARI) default(realprecision, 50080); my(x=((Pi*(15+7*sqrt(5))^2)/(12*(25+10*sqrt(5))^(3/2)))^(1/3)); for(k=1, 100, my(d=floor(x)); x=(x-d)*10; print1(d, ", "))
%Y A273636 Cf. A273633, A273634, A273635, A273637.
%K A273636 nonn,cons
%O A273636 0,1
%A A273636 _Felix Fröhlich_, May 27 2016