cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273654 Number of forests of labeled rooted trees of height at most 1, with n labels, four of which are used for root nodes and any root may contain >= 1 labels.

This page as a plain text file.
%I A273654 #5 May 27 2016 12:05:37
%S A273654 15,185,1485,9905,59850,341082,1872990,10032990,52814025,274436305,
%T A273654 1411449039,7195628895,36390053700,182622509860,909578754540,
%U A273654 4496410556268,22062707386875,107464431586995,519700280676885,2495827315731365,11905791978208590,56429414876395550
%N A273654 Number of forests of labeled rooted trees of height at most 1, with n labels, four of which are used for root nodes and any root may contain >= 1 labels.
%H A273654 Alois P. Heinz, <a href="/A273654/b273654.txt">Table of n, a(n) for n = 4..1000</a>
%F A273654 E.g.f.: x^4/4! * Sum_{j=0..4} Stirling2(4,j)*exp(x)^j.
%F A273654 a(n) = C(n,4) * Sum_{j=0..4} Stirling2(4,j) * j^(n-4).
%p A273654 a:= n-> binomial(n,4)*add(Stirling2(4,j)*j^(n-4), j=0..4):
%p A273654 seq(a(n), n=4..40);
%Y A273654 Column k=4 of A143396.
%K A273654 nonn
%O A273654 4,1
%A A273654 _Alois P. Heinz_, May 27 2016