This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A273661 #8 Feb 27 2017 06:25:04 %S A273661 1,2,30,1040,59850,5020092,568136184,82506827832,14838761544750, %T A273661 3218688299529560,824939949711312292,245760625104930199992, %U A273661 83971523217039191918912,32541316683315808775379000,14168363320559065768499122200,6874922021593176730438764171840 %N A273661 Number of forests of labeled rooted trees of height at most 1, with 2n labels, n of which are used for root nodes and any root may contain >= 1 labels. %H A273661 Alois P. Heinz, <a href="/A273661/b273661.txt">Table of n, a(n) for n = 0..252</a> %F A273661 a(n) = (2n)!/n! * [x^n] Sum_{j=0..n} Stirling2(n,j)*exp(x)^j. %F A273661 a(n) = C(2*n,n) * Sum_{j=0..n} Stirling2(2*n,j) * j^n. %F A273661 a(n) = A143396(2n,n). %p A273661 a:= n-> binomial(2*n,n)*add(Stirling2(n,j)*j^n, j=0..n): %p A273661 seq(a(n), n=0..20); %t A273661 a[0] = 1; a[n_] := Binomial[2*n, n]*Sum[StirlingS2[n, j]*j^n, {j, 0, n}]; Table[a[n], {n, 0, 20}] (* _Jean-François Alcover_, Feb 27 2017, translated from Maple *) %Y A273661 Cf. A143396. %K A273661 nonn %O A273661 0,2 %A A273661 _Alois P. Heinz_, May 27 2016