cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273661 Number of forests of labeled rooted trees of height at most 1, with 2n labels, n of which are used for root nodes and any root may contain >= 1 labels.

This page as a plain text file.
%I A273661 #8 Feb 27 2017 06:25:04
%S A273661 1,2,30,1040,59850,5020092,568136184,82506827832,14838761544750,
%T A273661 3218688299529560,824939949711312292,245760625104930199992,
%U A273661 83971523217039191918912,32541316683315808775379000,14168363320559065768499122200,6874922021593176730438764171840
%N A273661 Number of forests of labeled rooted trees of height at most 1, with 2n labels, n of which are used for root nodes and any root may contain >= 1 labels.
%H A273661 Alois P. Heinz, <a href="/A273661/b273661.txt">Table of n, a(n) for n = 0..252</a>
%F A273661 a(n) = (2n)!/n! * [x^n] Sum_{j=0..n} Stirling2(n,j)*exp(x)^j.
%F A273661 a(n) = C(2*n,n) * Sum_{j=0..n} Stirling2(2*n,j) * j^n.
%F A273661 a(n) = A143396(2n,n).
%p A273661 a:= n-> binomial(2*n,n)*add(Stirling2(n,j)*j^n, j=0..n):
%p A273661 seq(a(n), n=0..20);
%t A273661 a[0] = 1; a[n_] := Binomial[2*n, n]*Sum[StirlingS2[n, j]*j^n, {j, 0, n}]; Table[a[n], {n, 0, 20}] (* _Jean-François Alcover_, Feb 27 2017, translated from Maple *)
%Y A273661 Cf. A143396.
%K A273661 nonn
%O A273661 0,2
%A A273661 _Alois P. Heinz_, May 27 2016