This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A273663 #14 Mar 21 2021 13:00:20 %S A273663 0,0,1,2,3,3,4,4,5,6,7,7,8,8,9,10,11,12,13,14,15,16,17,17,18,18,19,20, %T A273663 21,21,22,22,23,24,25,25,26,26,27,28,29,30,31,32,33,34,35,35,36,36,37, %U A273663 38,39,39,40,40,41,42,43,43,44,44,45,46,47,48,49,50,51,52,53,53,54,54,55,56,57,57,58,58,59,60,61,61 %N A273663 Least monotonic left inverse for A273670: a(1) = 0; for n > 1, a(n) = A257680(A225901(n)) + a(n-1). %H A273663 Antti Karttunen, <a href="/A273663/b273663.txt">Table of n, a(n) for n = 1..10080</a> %F A273663 a(1) = 0; for n > 1, a(n) = A257680(A225901(n)) + a(n-1). %F A273663 Other identities. %F A273663 For all n >= 0, a(A273670(n)) = n. %o A273663 (Scheme, with memoization-macro definec) %o A273663 (definec (A273663 n) (if (= 1 n) 0 (+ (A257680 (A225901 n)) (A273663 (- n 1))))) %o A273663 (Python) %o A273663 from sympy import factorial as f %o A273663 def a007623(n, p=2): return n if n<p else a007623(n//p, p+1)*10 + n%p %o A273663 def a225901(n): %o A273663 s=0 %o A273663 k=2 %o A273663 while n: %o A273663 d=n%k %o A273663 n=n//k %o A273663 if d: s=s+(k - d)*f(k - 1) %o A273663 k+=1 %o A273663 return s %o A273663 def a257680(n): return 1 if '1' in str(a007623(n)) else 0 %o A273663 def a(n): return 0 if n==1 else a257680(a225901(n)) + a(n - 1) %o A273663 l=[0, 0] %o A273663 for n in range(2, 101): l.append(a257680(a225901(n)) + l[n - 1]) %o A273663 print(l[1:]) # _Indranil Ghosh_, Jun 24 2017 %Y A273663 Left inverse of A273670. %Y A273663 Cf. A225901, A257680. %Y A273663 Cf. also A273662. %K A273663 nonn %O A273663 1,4 %A A273663 _Antti Karttunen_, May 30 2016