cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273670 Numbers with at least one maximal digit in their factorial base representation.

This page as a plain text file.
%I A273670 #25 Apr 30 2020 13:35:47
%S A273670 1,3,4,5,7,9,10,11,13,15,16,17,18,19,20,21,22,23,25,27,28,29,31,33,34,
%T A273670 35,37,39,40,41,42,43,44,45,46,47,49,51,52,53,55,57,58,59,61,63,64,65,
%U A273670 66,67,68,69,70,71,73,75,76,77,79,81,82,83,85,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105
%N A273670 Numbers with at least one maximal digit in their factorial base representation.
%C A273670 Indexing starts from 0 (with a(0) = 1) to tally with the indexing used in A256450.
%C A273670 Numbers n for which is A260736(n) > 0.
%C A273670 Involution A225901 maps each term of this sequence to a unique term of A256450, and vice versa.
%H A273670 Antti Karttunen, <a href="/A273670/b273670.txt">Table of n, a(n) for n = 0..10000</a>
%H A273670 <a href="/index/Fa#facbase">Index entries for sequences related to factorial base representation</a>
%F A273670 a(0) = 1, and for n > 1, if A260736(1+a(n-1)) > 0, then a(n) = a(n-1) + 1, otherwise a(n-1) + 2. [In particular, if the previous term is 2k, then the next term is 2k+1, because all odd numbers are members.]
%F A273670 Other identities. For all n >= 0:
%F A273670 A273663(a(n)) = n.
%t A273670 r = MixedRadix[Reverse@ Range[2, 12]]; Select[Range@ 105, Total@ Boole@ Map[SameQ @@ # &, Transpose@{#, Range@ Length@ #}] > 0 &@ Reverse@ IntegerDigits[#, r] &] (* _Michael De Vlieger_, Aug 14 2016, Version 10.2 *)
%o A273670 (Scheme, with _Antti Karttunen_'s IntSeq-library)
%o A273670 (define A273670 (NONZERO-POS 0 0 A260736))
%o A273670 ;; Or as a naive recurrence with memoization-macro definec:
%o A273670 (definec (A273670 n) (if (zero? n) 1 (let ((prev (A273670 (- n 1)))) (cond ((even? prev) (+ 1 prev)) ((not (zero? (A260736 (+ 1 prev)))) (+ 1 prev)) (else (+ 2 prev))))))
%o A273670 (Python)
%o A273670 from sympy import factorial as f
%o A273670 def a007623(n, p=2): return n if n<p else a007623(int(n/p), p+1)*10 + n%p
%o A273670 def a257684(n):
%o A273670     x=str(a007623(n))[:-1]
%o A273670     y="".join([str(int(i) - 1) if int(i)>0 else '0' for i in x])[::-1]
%o A273670     return 0 if n==1 else sum([int(y[i])*f(i + 1) for i in range(len(y))])
%o A273670 def a260736(n): return 0 if n==0 else n%2 + a260736(a257684(n))
%o A273670 print([n for n in range(106) if a260736(n)>0]) # _Indranil Ghosh_, Jun 20 2017
%Y A273670 Cf. A153880 (complement).
%Y A273670 Cf. A273663 (a left inverse).
%Y A273670 Cf. A260736.
%Y A273670 Cf. also A225901, A256450.
%K A273670 nonn,base
%O A273670 0,2
%A A273670 _Antti Karttunen_, May 29 2016