This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A273679 #27 May 31 2024 21:04:26 %S A273679 11,18,22,26,27,36,45,59,140,162,201,278,427,563,588,757,951,2006, %T A273679 3938,4127,4490,5637,6074,6725,7025,10191,25628,39415,51872,57501, %U A273679 90227,115773,117142,148934 %N A273679 Numbers k such that 10^k - 1000000001 is prime. %C A273679 For k > 9, numbers k such that k-10 occurrences of the digit 9 followed by the digits 8999999999 is prime (see Example section). %C A273679 a(35) > 2*10^5. %H A273679 Makoto Kamada, <a href="https://stdkmd.net/nrr">Factorization of near-repdigit-related numbers</a>. %H A273679 Makoto Kamada, <a href="https://stdkmd.net/nrr/prime/prime_difficulty.txt">Search for 9w8999999999</a>. %e A273679 11 is in this sequence because 10^11 - 1000000001 = 98999999999 is prime. %e A273679 Initial terms and associated primes: %e A273679 a(1) = 11, 98999999999, %e A273679 a(2) = 18, 999999998999999999, %e A273679 a(3) = 22, 9999999999998999999999, %e A273679 a(4) = 26, 99999999999999998999999999, %e A273679 a(5) = 27, 999999999999999998999999999, etc. %t A273679 Select[Range[0, 100000], PrimeQ[10^#-1000000001] &] %o A273679 (PARI) is(n)=ispseudoprime(10^n-10^9-1) \\ _Charles R Greathouse IV_, Jun 08 2016 %o A273679 (Python) %o A273679 from sympy import isprime %o A273679 def afind(limit): %o A273679 tenk = 10**10 %o A273679 for k in range(10, limit+1): %o A273679 if isprime(tenk - 1000000001): print(k, end=", ") %o A273679 tenk *= 10 %o A273679 afind(100000) # _Michael S. Branicky_, Nov 18 2021 %Y A273679 Cf. A056654, A268448, A269303, A270339, A270613, A270831, A270890, A270929, A271269. %K A273679 nonn,more %O A273679 1,1 %A A273679 _Robert Price_, May 27 2016 %E A273679 a(32)-a(33) from _Robert Price_, Mar 01 2018 %E A273679 a(34) from _Robert Price_, Dec 31 2020