cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273691 Integer area of primitive cyclic quadrilaterals with integer sides and rational radius.

This page as a plain text file.
%I A273691 #5 May 28 2016 07:29:54
%S A273691 12,60,108,120,120,168,192,192,234,240,300,360,360,420,420,420,420,
%T A273691 420,420,432,540,540,588,600,660,660,714,768,840,924,960,960,966,1008,
%U A273691 1008,1008,1080,1080,1080,1092,1134,1200
%N A273691 Integer area of primitive cyclic quadrilaterals with integer sides and rational radius.
%C A273691 Given 4 segments a,b,c,d, there is a unique circumcircle such that these segments can be placed inside to form cyclic quadrilaterals. There are 3 ways to place these segments: abcd,acbd,adbc.
%C A273691 Primitive means a,b,c,d share no common factor.
%C A273691 The area S = sqrt[(s-a)(s-b)(s-c)(s-d)] where s=(a+b+c+d)/2 is the semiperimeter.
%C A273691 The circumradius R=Sqrt[a b+c d]*Sqrt[a c+b d]*Sqrt[a d+b c]/(4S)
%C A273691 The length of the diagonal separating a-b and c-d is (4S R)/(a b+c d), the other diagonal can be obtain by swapping b,c or swapping b,d.
%C A273691 It follows that if the sides and area are integers, then (any diagonal is rational) <=> (circumradius is rational) <=> (all diagonals are rational).
%C A273691 From empirical observation, the area seems to be a multiple of 6. (If so, the program could be modified to run 6 times as fast.)
%e A273691 a,  b,  c,  d,  S,   r
%e A273691 4,  4,  3,  3,  12,  5/2
%e A273691 12, 12, 5,  5,  60,  13/2
%e A273691 14, 13, 13, 4,  108, 65/8
%e A273691 15, 15, 8,  8,  120, 17/2
%e A273691 21, 10, 10, 9,  120, 85/8
%e A273691 24, 24, 7,  7,  168, 25/2
%e A273691 21, 13, 13, 11, 192, 65/6
%e A273691 25, 15, 15, 7,  192, 25/2
%e A273691 24, 20, 15, 7,  234, 25/2
%t A273691 SMax=1200;
%t A273691 Do[
%t A273691   x=S^2/(u v w);
%t A273691   If[u+v+w+x//OddQ,Continue[]];
%t A273691   If[v+w+x<=u,Continue[]];
%t A273691   {a,b,c,d}=(u+v+w+x)/2-{x,w,v,u};
%t A273691   If[GCD[a,b,c,d]>1,Continue[]];
%t A273691   R=(Sqrt[v w+u x]Sqrt[u w+v x]Sqrt[u v+w x])/(4S);
%t A273691   If[R\[NotElement]Rationals,Continue[]];
%t A273691   S(*{a,b,c,d,"",S,R,"",(4S R)/(a d+b c),(4S R)/(a c+b d),(4S R)/(a b+c d)}*)//Sow;
%t A273691   ,{S,1(*6*),SMax,1(*6*)}(*assuming S mod 6 = 0, set to 6 to run faster*)
%t A273691   ,{u,S^2//Divisors//Select[#,S<=#^2&&#<=S&]&}
%t A273691   ,{v,S^2/u//Divisors//Select[#,S^2<=u#^3&&u/3<#<=u&]&}
%t A273691   ,{w,S^2/(u v)//Divisors//Select[#,S^2<=u v#^2&&(u-v)/2<#<=v&]&}
%t A273691 ]//Reap//Last//Last(*//TableForm*)
%t A273691 {S,R,x,a,b,c,d}=.;
%K A273691 nonn
%O A273691 1,1
%A A273691 _Albert Lau_, May 28 2016