cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273698 Denominators of expansion of PolyLog(-2, x)/PolyLog(2, x), where PolyLog(m, x) is the polylogarithm function.

This page as a plain text file.
%I A273698 #11 Feb 16 2025 08:33:35
%S A273698 1,4,144,576,518400,2073600,3657830400,696729600,13168189440000,
%T A273698 52672757760000,45888506560512000,917770131210240000,
%U A273698 6840049010896797696000000,1013340594206932992000000,984967057569138868224000000,562838318610936496128000000
%N A273698 Denominators of expansion of PolyLog(-2, x)/PolyLog(2, x), where PolyLog(m, x) is the polylogarithm function.
%C A273698 Denominators of expansion of (Sum_{k>=1} x^k*k^2)/(Sum_{k>=1} x^k/k^2).
%C A273698 Denominators of numbers for which convolution with Sum_{k=1..n} 1/k^2 = A007406(n)/A007407(n) gives Sum_{k=1..n} k^2 = A000330(n).
%H A273698 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Dilogarithm.html">Dilogarithm</a>, <a href="https://mathworld.wolfram.com/Polylogarithm.html">Polylogarithm</a>, and <a href="https://mathworld.wolfram.com/WolstenholmeNumber.html">Wolstenholme Number</a>
%e A273698 1, 15/4, 1145/144, 7795/576, 10605889/518400, 59526571/2073600, 139954552433/3657830400, 34217723087/696729600, 806539298609929/13168189440000, ...
%t A273698 Table[Denominator[SeriesCoefficient[PolyLog[-2, x]/PolyLog[2, x], {x, 0, n}]], {n, 0, 15}]
%Y A273698 Cf. A232193 (numerators of expansion of PolyLog(-1, x)/PolyLog(1, x)), A232248 (denominators of expansion of PolyLog(-1, x)/PolyLog(1, x)).
%Y A273698 Cf. A000330, A007406, A007407, A266581 (numerators).
%K A273698 nonn,frac
%O A273698 0,2
%A A273698 _Ilya Gutkovskiy_, May 28 2016