This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A273752 #13 Aug 17 2018 19:47:27 %S A273752 7140,16380,87780,1543668,1697892,4444440,5858580 %N A273752 Integer area of primitive bicentric quadrilateral with integer side, rational inradius and rational circumradius. Excluding right kites. %C A273752 Bicentric quadrilaterals have the following properties: %C A273752 1. a+c = b+d = s where s is the semiperimeter; %C A273752 2. A+C = B+D = 180 degrees; %C A273752 2. Area S = sqrt(a b c d); %C A273752 3. Circumradius R = sqrt(a*b + c*d)*sqrt(a*c + b*d)*sqrt(a*d + b*c)/S; %C A273752 4. Inradius r = S/s (it follows that r is always rational if sides and area are integers); %C A273752 5. Length of the diagonal separating a-b and c-d is (4S*R)/(a*b + c*d), the other diagonal can be obtained by swapping b,c or swapping b,d. It follows that all diagonals are rational iff a,b,c,d,R,S are rationals. %C A273752 There are only 7 primitive cases which are not right kites for S < 10^7. %C A273752 From empirical observation, the area seems to be a multiple of 84. (If proven, the program could be modified to run 84 times as fast.) %C A273752 Special cases of bicentric quadrilaterals are right kites and isosceles trapezium. %C A273752 Integer right kites can be generated by joining two (a,b,c) Pythagorean triangles, which gives S=a b/2, R=c/2, r=ab/(a+b+c). %C A273752 Integer isosceles trapezium is impossible. Proof: %C A273752 1. Let the sides of integer isosceles trapezium be (s-t,s,s+t,s); %C A273752 2. S = s*sqrt(s^2 - t^2) and R = 2*s^2*sqrt(2s^2 - t^2)/S; %C A273752 3. s^2 - t^2 and 2s^2 - t^2 are perfect squares; %C A273752 4. Let u^2 = 2s^2 - t^2, v^2 = s^2 - t^2; %C A273752 5. t^2,s^2,u^2 is an arithmetic progression with common difference = v^2; %C A273752 6. Fermat's right triangle theorem states that no integer solution exists, except v=0 which corresponds to (0,s,2s,s), a degenerate quadrilateral. QED. %H A273752 Wikipedia, <a href="https://en.wikipedia.org/wiki/Bicentric_quadrilateral">Bicentric quadrilateral</a>. %H A273752 Wikipedia, <a href="https://en.wikipedia.org/wiki/Fermat%27s_right_triangle_theorem">Fermat's right triangle theorem</a>. %e A273752 All examples with S < 10^7: %e A273752 a, b, c, d, S, R, r %e A273752 204, 140, 85, 21, 7140, 442, 476/15 %e A273752 315, 260, 91, 36, 16380, 650, 140/3 %e A273752 440, 399, 231, 190, 87780, 1885/2, 418/3 %e A273752 2397, 1564, 1316, 483, 1543668, 4810, 128639/240 %e A273752 4756, 3451, 1428, 123, 1697892, 15130, 348 %e A273752 2849, 2184, 2145, 1480, 4444440, 6290, 3080/3 %e A273752 5460, 5365, 1131, 1036, 5858580, 11050, 7215/8 %t A273752 SMin=7140; %t A273752 SMax=16380(*WARNING: runs very slow*); %t A273752 dS=1(*assuming S mod 84 = 0, set to 84 to run faster*); %t A273752 Do[ %t A273752 s=(a+b)/2+Sqrt[(a-b)^2/4+S^2/(a b)]; %t A273752 If[s//IntegerQ//Not,Continue[]]; %t A273752 If[GCD[a,b,s]>1,Continue[]]; %t A273752 R=(Sqrt[#1#2+#3#4]Sqrt[#1#3+#2#4]Sqrt[#1#4+#2#3])/S&[a,b,s-b,s-a]; %t A273752 If[R\[NotElement]Rationals,Continue[]]; %t A273752 S(*{a,b,s-b,s-a,S,R,S/s}*)//Sow; %t A273752 ,{S,Round[SMin,dS],SMax,dS} %t A273752 ,{a,S^2//Divisors//Select[#,S<#^2&&#<S&]&} %t A273752 ,{b,S^2/a//Divisors//Select[#,a/2<#<a&&1+a-#<=S^2/(a#)<=#(2#-a)&]&} %t A273752 ]//Reap//Last//Last(*//TableForm*) %t A273752 {S,R,a,b,s}=.; %K A273752 nonn,more %O A273752 1,1 %A A273752 _Albert Lau_, May 29 2016