This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A273771 #12 Jun 17 2016 00:41:48 %S A273771 168,408,420,528,588,600,660,1008 %N A273771 Integer area of primitive tangential quadrilateral with integer sides, integer inradius and rational diagonals. %C A273771 A tangential quadrilateral is a quadrilateral whose sides are all tangent to a single circle within the quadrilateral. This circle is called the incircle of the quadrilateral or its inscribed circle, its center is the incenter and its radius is called the inradius. %C A273771 The area S of a tangential quadrilateral is given by S = r s where s is the semiperimeter and r is the inradius. %C A273771 The sides of a tangential quadrilateral satisfy s = a + c = b + d where a,c and b,d are opposite sides. %C A273771 Let D^2 = a b c d - S^2 (D can be positive or negative), then the distance from the tangent point on a(or b) to the vertex point between a,b is given by (ab-D)/s. Similar formula is given for changing a-b to b-c, c-d and d-a. %C A273771 As a consequences of above formula, a b c d >= S^2. %C A273771 The diagonal separating ad and bc is p=Sqrt[(a-d)^2+(4S^2)/(a d+b c+2D)] %C A273771 The diagonal separating ab and cd is q=Sqrt[(a-b)^2+(4S^2)/(a b+c d-2D)] %e A273771 a, b, c, d, S, r, p, q %e A273771 15, 15, 13, 13, 168, 6, 14, 24 %e A273771 26, 26, 25, 25, 408, 8, 17, 48 %e A273771 25, 25, 17, 17, 420, 10, 28, 30 %e A273771 26, 26, 22, 22, 528, 11, 40, 132/5 %e A273771 28, 28, 21, 21, 588, 12, 35, 168/5 %e A273771 25, 25, 25, 25, 600, 12, 40, 30 %e A273771 39, 30, 16, 25, 660, 12, 34, 39 %e A273771 102, 102, 10, 10, 1008, 9, 104, 252/13 %t A273771 SMax=500; %t A273771 Do[ %t A273771 If[a==c&&\[CapitalDelta]<0,Continue[]]; %t A273771 If[GCD[a,b,s,r]>1,Continue[]]; %t A273771 If[b c+\[CapitalDelta]<=0||c d-\[CapitalDelta]<=0,Continue[]]; %t A273771 If[!{p=Sqrt[(a-d)^2+(4S^2)/(a d+2\[CapitalDelta]+b c)], %t A273771 q=Sqrt[(a-b)^2+(4S^2)/(a b-2\[CapitalDelta]+c d)] %t A273771 }\[Element]Rationals,Continue[]]; %t A273771 S(*{a,b,c,d,S,r,\[CapitalDelta],p,q}*)//Sow; %t A273771 ,{S,SMax},{s,S//Divisors//Select[#,#^2>=4S&]&},{r,{S/s}} %t A273771 ,{a,s/2//Ceiling,s},{c,{s-a}} %t A273771 ,{b,s/2//Ceiling,a},{d,{s-b}} %t A273771 ,{\[CapitalDelta],Select[{1,-1}Sqrt[a b c d-S^2],IntegerQ]//Union} %t A273771 ]//Reap//Last//Last(*//TableForm*) %t A273771 {p,q}=.; %K A273771 nonn %O A273771 1,1 %A A273771 _Albert Lau_, Jun 03 2016