cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273771 Integer area of primitive tangential quadrilateral with integer sides, integer inradius and rational diagonals.

This page as a plain text file.
%I A273771 #12 Jun 17 2016 00:41:48
%S A273771 168,408,420,528,588,600,660,1008
%N A273771 Integer area of primitive tangential quadrilateral with integer sides, integer inradius and rational diagonals.
%C A273771 A tangential quadrilateral is a quadrilateral whose sides are all tangent to a single circle within the quadrilateral. This circle is called the incircle of the quadrilateral or its inscribed circle, its center is the incenter and its radius is called the inradius.
%C A273771 The area S of a tangential quadrilateral is given by S = r s where s is the semiperimeter and r is the inradius.
%C A273771 The sides of a tangential quadrilateral satisfy s = a + c = b + d where a,c and b,d are opposite sides.
%C A273771 Let D^2 = a b c d - S^2 (D can be positive or negative), then the distance from the tangent point on a(or b) to the vertex point between a,b is given by (ab-D)/s. Similar formula is given for changing a-b to b-c, c-d and d-a.
%C A273771 As a consequences of above formula, a b c d >= S^2.
%C A273771 The diagonal separating ad and bc is p=Sqrt[(a-d)^2+(4S^2)/(a d+b c+2D)]
%C A273771 The diagonal separating ab and cd is q=Sqrt[(a-b)^2+(4S^2)/(a b+c d-2D)]
%e A273771 a,   b,   c,  d,  S,    r,  p,   q
%e A273771 15,  15,  13, 13, 168,  6,  14,  24
%e A273771 26,  26,  25, 25, 408,  8,  17,  48
%e A273771 25,  25,  17, 17, 420,  10, 28,  30
%e A273771 26,  26,  22, 22, 528,  11, 40,  132/5
%e A273771 28,  28,  21, 21, 588,  12, 35,  168/5
%e A273771 25,  25,  25, 25, 600,  12, 40,  30
%e A273771 39,  30,  16, 25, 660,  12, 34,  39
%e A273771 102, 102, 10, 10, 1008, 9,  104, 252/13
%t A273771 SMax=500;
%t A273771 Do[
%t A273771   If[a==c&&\[CapitalDelta]<0,Continue[]];
%t A273771   If[GCD[a,b,s,r]>1,Continue[]];
%t A273771   If[b c+\[CapitalDelta]<=0||c d-\[CapitalDelta]<=0,Continue[]];
%t A273771   If[!{p=Sqrt[(a-d)^2+(4S^2)/(a d+2\[CapitalDelta]+b c)],
%t A273771        q=Sqrt[(a-b)^2+(4S^2)/(a b-2\[CapitalDelta]+c d)]
%t A273771       }\[Element]Rationals,Continue[]];
%t A273771   S(*{a,b,c,d,S,r,\[CapitalDelta],p,q}*)//Sow;
%t A273771   ,{S,SMax},{s,S//Divisors//Select[#,#^2>=4S&]&},{r,{S/s}}
%t A273771   ,{a,s/2//Ceiling,s},{c,{s-a}}
%t A273771   ,{b,s/2//Ceiling,a},{d,{s-b}}
%t A273771   ,{\[CapitalDelta],Select[{1,-1}Sqrt[a b c d-S^2],IntegerQ]//Union}
%t A273771 ]//Reap//Last//Last(*//TableForm*)
%t A273771 {p,q}=.;
%K A273771 nonn
%O A273771 1,1
%A A273771 _Albert Lau_, Jun 03 2016