cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273776 Smallest composite number with n distinct prime factors with property that the concatenation of its distinct prime factors, in descending order, is a palindrome.

This page as a plain text file.
%I A273776 #14 Jul 08 2016 09:50:10
%S A273776 4,46,138,690,197890,5444670,156719940,4941906970,135969743910
%N A273776 Smallest composite number with n distinct prime factors with property that the concatenation of its distinct prime factors, in descending order, is a palindrome.
%C A273776 4 = 2 * 2
%C A273776 46 = 2 * 23
%C A273776 138 = 2 * 3 * 23
%C A273776 690 = 2 * 3 * 5 * 23
%C A273776 197890 = 2 * 5 * 7 * 11 * 257
%C A273776 5444670 = 2 * 3 * 5 * 7 * 11 * 2357
%C A273776 156719940 = 2 * 2  * 3 * 5 * 13 * 17 * 53 * 223
%C A273776 4941906970 = 2 * 5 * 7 * 11 * 13 * 17 * 113 * 257
%C A273776 135969743910 = 2 * 3 * 5 * 7 * 11 * 13 * 17 * 113 * 2357
%e A273776 Prime factors of 4 are 2, 2 and concat(2,2) = 22 is palindromic.
%e A273776 Prime factors of 46 are 2, 23 and concat(23,2) = 232 is palindromic.
%e A273776 Prime factors of 5444670 are 2, 3, 5, 7, 11, 2357 and concat(2357,11,7,5,3,2) = 2357117532 is palindromic.
%p A273776 with(numtheory): T:=proc(w) local x, y, z; x:=0; y:=w; for z from 1 to ilog10(w)+1 do x:=10*x+(y mod 10); y:=trunc(y/10); od; x; end;
%p A273776 P:=proc(q) local a,b,c,i,j,k,n; c:=1; for j from 1 to q do for n from c to q do
%p A273776 if not isprime(n) then a:=ifactors(n)[2]; b:=[]; if nops(a)=j then for k from 1 to nops(a) do
%p A273776 for i from 1 to a[k][2] do b:=[op(b),a[k][1]]; od; od; b:=sort(b); a:=b[nops(b)];
%p A273776 for k from nops(b)-1 by -1 to 1 do a:=a*10^(ilog10(b[k])+1)+b[k]; od;
%p A273776 if T(a)=a then c:=n; print(n); break; fi; fi; fi; od; od; end: P(10^9);
%Y A273776 Cf. A046449.
%K A273776 nonn,base,more
%O A273776 1,1
%A A273776 _Paolo P. Lava_, Jul 06 2016
%E A273776 a(7)-a(9) from _Giovanni Resta_