This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A273777 #21 Sep 13 2017 02:15:22 %S A273777 4,5,6,6,7,8,9,8,10,11,12,10,13,14,10,15,12,16,17,18,14,19,12,20,21, %T A273777 16,22,23,24,18,25,26,14,27,20,28,29,16,30,22,31,32,33,24,34,18,35,36, %U A273777 26,37,38,39,28,40,18,41,42,30,43,44,22,45,32,46,47,20,48 %N A273777 Consider all ways of writing the n-th composite number as the product of two divisors d1*d2 = d3*d4 = ... where each divisor is larger than 1; a(n) is the maximum of the sums {d1 + d2, d3 + d4, ...}. %C A273777 The divisors must be > 1 and < n. %C A273777 For the minimum sums see A273227. %F A273777 Let m = A002808(n). Then a(n) = A020639(m) + m / A020639(m). %e A273777 a(14) = 14 because A002808(14) = 24 = 2*12 = 3*8 = 4*6 and 2+12 = 14 is the maximum sum. %p A273777 with(numtheory):nn:=100:lst:={}: %p A273777 for n from 1 to nn do: %p A273777 it:=0:lst:={}: %p A273777 d:=divisors(n):n0:=nops(d): %p A273777 if n0>2 then %p A273777 for i from 2 to n0-1 do: %p A273777 p:=d[i]: %p A273777 for j from i to n0-1 do: %p A273777 q:=d[j]: %p A273777 if p*q=n then %p A273777 lst:=lst union {p+q}: %p A273777 else %p A273777 fi: %p A273777 od: %p A273777 od: %p A273777 n0:=nops(lst):printf(`%d, `, lst[n0]): %p A273777 fi: %p A273777 od: %t A273777 Function[n, Max@ Map[Plus[#, n/#] &, Rest@ Take[#, Ceiling[Length[#]/2]]] &@ Divisors@ n] /@ Select[Range@ 120, CompositeQ] (* _Michael De Vlieger_, May 30 2016 *) %o A273777 (PARI) lista(nn) = {forcomposite(n=2, nn, m = 0; fordiv(n, d, if ((d != 1) && (d != n), m = max(m, d+n/d));); print1(m, ", "););} \\ _Michel Marcus_, Sep 13 2017 %Y A273777 Cf. A002808, A020639, A046343, A063655, A273227. %K A273777 nonn %O A273777 1,1 %A A273777 _Michel Lagneau_, May 30 2016 %E A273777 Name edited by _Jon E. Schoenfield_, Sep 12 2017