This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A273816 #11 Jun 14 2016 06:46:00 %S A273816 6,9,4,8,8,2,2,7,8,1,0,7,9,6,2,9,7,8,9,4,3,6,4,3,6,4,4,5,4,7,0,8,2,9, %T A273816 7,5,7,6,7,4,8,5,1,1,3,2,6,0,9,8,9,1,7,3,5,1,6,2,3,8,0,6,8,8,1,9,1,4, %U A273816 2,2,3,3,8,1,9,9,8,0,4,1,8,6,8,3,9,9,5,2,3,5,1,8,0,6,0,9,5,5,3,7,1,9,3 %N A273816 Decimal expansion the Bessel moment c(3,0) = Integral_{0..inf} K_0(x)^3 dx, where K_0 is the modified Bessel function of the second kind. %H A273816 David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, <a href="http://arxiv.org/abs/0801.0891">Elliptic integral evaluations of Bessel moments</a>, arXiv:0801.0891 [hep-th], 2008. %F A273816 c(3, 0) = 3*Gamma(1/3)^6/(32*Pi*2^(2/3)). %F A273816 Equals (1/2)*Pi*K[(1/4)*(2 - Sqrt[3])]*K[(1/4)*(2 + Sqrt[3])], where K(x) is the complete elliptic integral of the first kind. %F A273816 Also equals sqrt(3) Pi^3/8 3F2(1/2, 1/2, 1/2; 1, 1; 1/4), where 3F2 is the generalized hypergeometric function A263490. %e A273816 6.94882278107962978943643644547082975767485113260989173516238... %t A273816 c[3, 0] = 3*Gamma[1/3]^6/(32*Pi*2^(2/3)); %t A273816 RealDigits[c[3, 0], 10, 103][[1]] %Y A273816 Cf. A273817 (c(3,1)), A273818 (c(3,2)), A273819 (c(3,3)). %K A273816 nonn,cons %O A273816 1,1 %A A273816 _Jean-François Alcover_, May 31 2016