A273819 Decimal expansion the Bessel moment c(3,3) = Integral_{0..inf} x^3 K_0(x)^3 dx, where K_0 is the modified Bessel function of the second kind.
1, 1, 4, 6, 3, 5, 7, 4, 6, 2, 2, 9, 8, 1, 9, 6, 3, 0, 2, 0, 0, 5, 2, 0, 7, 6, 2, 9, 5, 7, 4, 2, 5, 6, 8, 9, 6, 9, 8, 4, 6, 7, 6, 6, 9, 8, 7, 8, 6, 1, 8, 7, 5, 3, 5, 5, 5, 4, 3, 3, 3, 9, 6, 3, 0, 0, 2, 2, 0, 3, 1, 7, 9, 8, 4, 9, 5, 1, 5, 5, 1, 4, 2, 6, 2, 0, 2, 9, 0, 4, 1, 6, 5, 5, 4, 3, 1, 9, 4, 3, 5, 4
Offset: 0
Examples
0.1146357462298196302005207629574256896984676698786187535554333963...
Links
- David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, Elliptic integral evaluations of Bessel moments, arXiv:0801.0891 [hep-th], 2008.
Programs
-
Mathematica
c[3, 3] = (1/9)*(PolyGamma[1, 1/3] - PolyGamma[1, 2/3]) - 2/3; RealDigits[c[3, 3], 10, 102][[1]]
-
PARI
(zetahurwitz(2,1/3)-zetahurwitz(2,2/3)-6)/9 \\ Charles R Greathouse IV, Oct 23 2023
Formula
c(3, 3) = (1/9)*(PolyGamma(1, 1/3) - PolyGamma(1, 2/3)) - 2/3.