cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A273840 Decimal expansion the Bessel moment c(4,2) = Integral_{0..inf} x^2 K_0(x)^4 dx, where K_0 is the modified Bessel function of the second kind.

Original entry on oeis.org

1, 9, 5, 7, 7, 0, 6, 2, 5, 2, 4, 7, 2, 8, 7, 9, 1, 7, 2, 1, 7, 4, 5, 8, 0, 8, 3, 2, 7, 5, 5, 7, 7, 2, 3, 7, 4, 1, 8, 8, 2, 7, 8, 9, 6, 9, 6, 6, 5, 2, 5, 0, 2, 8, 1, 9, 7, 9, 3, 3, 8, 4, 6, 1, 6, 6, 3, 5, 2, 9, 9, 2, 9, 6, 9, 4, 4, 4, 4, 6, 2, 6, 5, 5, 3, 5, 2, 9, 1, 1, 1, 6, 3, 8, 5, 8, 0, 8, 5, 7, 6, 8, 8, 9
Offset: 0

Views

Author

Jean-François Alcover, Jun 01 2016

Keywords

Examples

			0.195770625247287917217458083275577237418827896966525028197933846...
		

Crossrefs

Cf. A273816 (c(3,0)), A273817 (c(3,1)), A273818 (c(3,2)), A273819 (c(3,3)), A273839 (c(4,0)), A233091 (c(4,1)), A273841 (c(4,3)).

Programs

  • Mathematica
    c[4, 2] = (Pi^4/64)*(4*HypergeometricPFQ[{1/2, 1/2, 1/2, 1/2}, {1, 1, 1}, 1] - 3*HypergeometricPFQ[{1/2, 1/2, 1/2, 1/2}, {2, 1, 1}, 1]) - 3*Pi^2 / 16;
    RealDigits[c[4, 2], 10, 104][[1]]

Formula

c(4,2) = (Pi^4/64)*(4 * 4F3(1/2, 1/2, 1/2, 1/2; 1, 1, 1; 1) - 3 * 4F3(1/2, 1/2, 1/2, 1/2; 2, 1, 1; 1)) - 3*Pi^2/16, where 4F3 is the generalized hypergeometric function.

A273841 Decimal expansion the Bessel moment c(4,3) = Integral_{0..inf} x^3 K_0(x)^4 dx, where K_0 is the modified Bessel function of the second kind.

Original entry on oeis.org

0, 7, 5, 4, 4, 9, 9, 4, 7, 5, 6, 6, 1, 6, 1, 2, 4, 9, 9, 3, 1, 1, 9, 2, 7, 2, 2, 8, 3, 0, 6, 2, 9, 6, 8, 5, 4, 7, 9, 8, 4, 0, 7, 5, 1, 4, 4, 9, 4, 8, 4, 1, 3, 0, 3, 9, 2, 0, 5, 9, 4, 0, 2, 7, 3, 1, 0, 2, 7, 1, 0, 7, 5, 1, 5, 7, 5, 5, 9, 8, 8, 4, 7, 8, 2, 8, 7, 2, 2, 2, 3, 5, 2, 0, 4, 2, 0, 8, 7, 7, 1, 9, 4, 8
Offset: 0

Views

Author

Jean-François Alcover, Jun 01 2016

Keywords

Examples

			0.075449947566161249931192722830629685479840751449484130392059402731...
		

Crossrefs

Cf. A273816 (c(3,0)), A273817 (c(3,1)), A273818 (c(3,2)), A273819 (c(3,3)), A273839 (c(4,0)), A233091 (c(4,1)), A273840 (c(4,2)).

Programs

  • Mathematica
    c[4, 3] = (7/32)*Zeta[3] - 3/16;
    RealDigits[c[4, 3], 10, 103][[1]]
  • PARI
    zeta(3)*7/32-3/16 \\ Charles R Greathouse IV, Oct 23 2023

Formula

c(4,3) = (7/32)*zeta(3) - 3/16.
Showing 1-2 of 2 results.