A273841 Decimal expansion the Bessel moment c(4,3) = Integral_{0..inf} x^3 K_0(x)^4 dx, where K_0 is the modified Bessel function of the second kind.
0, 7, 5, 4, 4, 9, 9, 4, 7, 5, 6, 6, 1, 6, 1, 2, 4, 9, 9, 3, 1, 1, 9, 2, 7, 2, 2, 8, 3, 0, 6, 2, 9, 6, 8, 5, 4, 7, 9, 8, 4, 0, 7, 5, 1, 4, 4, 9, 4, 8, 4, 1, 3, 0, 3, 9, 2, 0, 5, 9, 4, 0, 2, 7, 3, 1, 0, 2, 7, 1, 0, 7, 5, 1, 5, 7, 5, 5, 9, 8, 8, 4, 7, 8, 2, 8, 7, 2, 2, 2, 3, 5, 2, 0, 4, 2, 0, 8, 7, 7, 1, 9, 4, 8
Offset: 0
Examples
0.075449947566161249931192722830629685479840751449484130392059402731...
Links
- David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, Elliptic integral evaluations of Bessel moments, arXiv:0801.0891.
- R. J. Mathar, Some definite intgrals over a power multiplied by four modified Bessel functions vixra:1606.0141 (2016) eq. (64)
Crossrefs
Programs
-
Mathematica
c[4, 3] = (7/32)*Zeta[3] - 3/16; RealDigits[c[4, 3], 10, 103][[1]]
-
PARI
zeta(3)*7/32-3/16 \\ Charles R Greathouse IV, Oct 23 2023
Formula
c(4,3) = (7/32)*zeta(3) - 3/16.