This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A273842 #13 Jun 02 2016 02:18:05 %S A273842 2,9,4,9,1,7,1,9,8,4,7,4,2,3,8,4,9,6,0,7,0,5,7,0,4,7,9,1,2,0,9,1,7,4, %T A273842 7,9,1,8,4,3,6,7,6,5,7,3,1,0,6,1,1,6,7,4,0,8,9,1,4,7,5,5,4,0,4,5,1,9, %U A273842 8,4,4,2,4,8,7,4,5,5,2,8,6,2,5,1,3,1,2,1,1,0,1,1,1,9,7,2,8,4,1,5,9,5,4 %N A273842 Decimal expansion of the double integral int_{0..inf} int_{0..inf} 1/sqrt((1+x^2)(1+y^2)(1+(x+y)^2)) dx dy. %H A273842 David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, <a href="http://arxiv.org/abs/0801.0891">Elliptic integral evaluations of Bessel moments</a>, arXiv:0801.0891 [hep-th], 2008. %F A273842 Gamma(1/3)^6/(8*2^(2/3)*Pi^2). %e A273842 2.94917198474238496070570479120917479184367657310611674089147554... %t A273842 RealDigits[ Gamma[1/3]^6/(8*2^(2/3)*Pi^2) , 10, 103][[1]] %o A273842 (PARI) gamma(1/3)^6/(8*2^(2/3)*Pi^2) \\ _Michel Marcus_, Jun 01 2016 %Y A273842 Cf. A073005. %K A273842 cons,nonn %O A273842 1,1 %A A273842 _Jean-François Alcover_, Jun 01 2016