A273861 Partial sums of the number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 1006", based on the 5-celled von Neumann neighborhood.
1, 6, 15, 36, 65, 106, 167, 256, 357, 470, 603, 764, 953, 1186, 1495, 1872, 2269, 2678, 3107, 3564, 4049, 4578, 5183, 5856, 6565, 7318, 8139, 9044, 10049, 11218, 12631, 14200, 15805, 17422, 19059, 20724, 22417, 24154, 25967, 27848, 29765, 31726, 33755, 35868
Offset: 0
References
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
Links
- Robert Price, Table of n, a(n) for n = 0..128
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- S. Wolfram, A New Kind of Science
- Index entries for sequences related to cellular automata
- Index to 2D 5-Neighbor Cellular Automata
- Index to Elementary Cellular Automata
Crossrefs
Cf. A169709.
Programs
-
Mathematica
CAStep[rule_,a_]:=Map[rule[[10-#]]&,ListConvolve[{{0,2,0},{2,1,2},{0,2,0}},a,2],{2}]; code=1006; stages=128; rule=IntegerDigits[code,2,10]; g=2*stages+1; (* Maximum size of grid *) a=PadLeft[{{1}},{g,g},0,Floor[{g,g}/2]]; (* Initial ON cell on grid *) ca=a; ca=Table[ca=CAStep[rule,ca],{n,1,stages+1}]; PrependTo[ca,a]; (* Trim full grid to reflect growth by one cell at each stage *) k=(Length[ca[[1]]]+1)/2; ca=Table[Table[Part[ca[[n]][[j]],Range[k+1-n,k-1+n]],{j,k+1-n,k-1+n}],{n,1,k}]; on=Map[Function[Apply[Plus,Flatten[#1]]],ca] (* Count ON cells at each stage *) Table[Total[Part[on,Range[1,i]]],{i,1,Length[on]}] (* Sum at each stage *)
Comments