This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A273875 #10 Jun 03 2016 16:08:22 %S A273875 1,2,2,2,4,3,1,1,4,3,1,1,3,3,1,1,3,6,4,6,5,2,4,2,4,5,5,5,5,5,3,2,4,6, %T A273875 4,8,5,5,3,4,7,7,6,3,10,2,4,1,3,10,4,8,4,8,5,4,5,9,5,4,4,4,10,1,11,11, %U A273875 4,10,10,4,4,9,6,9,7,5,6,8,5,2 %N A273875 Number of ordered ways to write n as w^2 + x^2 + y^2 + z^2 with x*y + 2*y*z + 4*z*x a nonnegative cube, where w,x,y,z are integers with w >= 0 and x > 0. %C A273875 Conjecture: (i) a(n) > 0 for all n > 0. %C A273875 (ii) Any positive integer can be written as w^2 + x^2 + y^2 + z^2 with x*y + 2*y*z + 4*z*x = 4*t^3 for some t = 0,1,2,..., where w,x,y,z are integers with x > 0. Also, any natural number can be written as w^2 + x^2 + y^2 + z^2 with x*y + 3*y*z + 4*z*x = 3*t^3 for some t = 0,1,2,..., where w,x,y,z are integers with x >= 0. %C A273875 (iii) For each triple (a,b,c) = (1,1,2), (1,2,3), (3,2,1), (4,1,1), any natural number can be written as w^2 + x^2 + y^2 + z^2 with a*x*y + b*y*z - c*z*w a nonnegative cube, where w,x,y are nonnegative integers and z is an integer. %C A273875 For more conjectural refinements of Lagrange's four-square theorem, see the author's preprint arXiv:1604.06723. %H A273875 Zhi-Wei Sun, <a href="/A273875/b273875.txt">Table of n, a(n) for n = 1..10000</a> %H A273875 Yu-Chen Sun and Zhi-Wei Sun, <a href="http://arxiv.org/abs/1605.03074">Two refinements of Lagrange's four-square theorem</a>, arXiv:1605.03074 [math.NT], 2016. %H A273875 Zhi-Wei Sun, <a href="http://arxiv.org/abs/1604.06723">Refining Lagrange's four-square theorem</a>, arXiv:1604.06723 [math.GM], 2016. %e A273875 a(1) = 1 since 1 = 0^2 + 1^2 + 0^2 + 0^2 with 1*0 + 2*0*0 + 4*0*1 = 0^3. %e A273875 a(7) = 1 since 7 = 2^2 + 1^2 + (-1)^2 + 1^2 with 1*(-1) + 2*(-1)*1 + 4*1*1 = 1^3. %e A273875 a(8) = 1 since 8 = 2^2 + 2^2 + 0^2 + 0^2 with 2*0 + 2*0*0 + 4*0*2 = 0^3. %e A273875 a(11) = 1 since 11 = 3^2 + 1^2 + 1^2 + 0^2 with 1*1 + 2*1*0 + 4*0*1 = 1^3. %e A273875 a(12) = 1 since 12 = 3^2 + 1^2 + (-1)^2 + 1^2 with 1*(-1) + 2*(-1)*1 + 4*1*1 = 1^3. %e A273875 a(15) = 1 since 15 = 1^2 + 1^2 + (-3)^2 + (-2)^2 with 1*(-3) + 2*(-3)*(-2) + 4*(-2)*1 = 1^3. %e A273875 a(16) = 1 since 16 = 0^2 + 4^2 + 0^2 + 0^2 with 4*0 + 2*0*0 + 4*0*4 = 0^3. %e A273875 a(48) = 1 since 48 = 4^2 + 4^2 + 0^2 + 4^2 with 4*0 + 2*0*4 + 4*4*4 = 4^3. %e A273875 a(112) = 1 since 112 = 4^2 + 8^2 + (-4)^2 + 4^2 with 8*(-4) + 2*(-4)*4 + 4*4*8 = 4^3. %e A273875 a(131) = 1 since 131 = 9^2 + 3^2 + (-4)^2 + 5^2 with 3*(-4) + 2*(-4)*5 + 4*5*3 = 2^3. %e A273875 a(176) = 1 since 176 = 12^2 + 4^2 + 0^2 + 4^2 with 4*0 + 2*0*4 + 4*4*4 = 4^3. %e A273875 a(224) = 1 since 224 = 0^2 + 8^2 + 4^2 + 12^2 with 8*4 + 2*4*12 + 4*12*8 = 8^3. %e A273875 a(304) = 1 since 304 = 4^2 + 4^2 + (-16)^2 + (-4)^2 with 4*(-16) + 2*(-16)*(-4) + 4*(-4)*4 = 0^3. %e A273875 a(944) = 1 since 944 = 20^2 + 12^2 + (-16)^2 + 12^2 with 12*(-16) + 2*(-16)*12 + 4*12*12 = 0^3. %e A273875 a(4784) = 1 since 4784 = 60^2 + 28^2 + (-16)^2 + 12^2 with 28*(-16) + 2*(-16)*12 + 4*12*28 = 8^3. %e A273875 a(8752) = 1 since 8752 = 92^2 + 4^2 + (-16)^2 + (-4)^2 with 4*(-16) + 2*(-16)*(-4) + 4*(-4)*4 = 0^3. %t A273875 SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]] %t A273875 CQ[n_]:=QQ[n]=n>=0&&IntegerQ[n^(1/3)] %t A273875 Do[r=0;Do[If[SQ[n-x^2-y^2-z^2]&&CQ[x*(-1)^j*y+2(-1)^(j+k)*y*z+4*(-1)^k*z*x],r=r+1],{x,1,Sqrt[n]},{y,0,Sqrt[n-x^2]},{j,0,Min[1,y]},{z,0,Sqrt[n-x^2-y^2]},{k,0,Min[1,z]}];Print[n," ",r];Continue,{n,1,80}] %Y A273875 Cf. A000118, A000290, A000578, A260625, A261876, A262357, A267121, A268197, A268507, A269400, A270073, A270969, A271510, A271513, A271518, A271608, A271665, A271714, A271721, A271724, A271775, A271778, A271824, A272084, A272332, A272351, A272620, A272888, A272977, A273021, A273107, A273108, A273110, A273134, A273278, A273294, A273302, A273404, A273429, A273432, A273458, A273568, A273616, A273826. %K A273875 nonn %O A273875 1,2 %A A273875 _Zhi-Wei Sun_, Jun 02 2016